O

DOMAIN System Call Reference

Order No. 007196
Revision 01

Apollo Computer Inc.
330 Billerica Road
Chelmsford, MA 01824



Copyright © 1986 Apollo Computer Inc.
All rights reserved.

Printed in U.S.A.

First Printing: January 1987

®
This document was produced using the SCRIBE document preparation system. (SCRIBE is a
registered trademark of Unilogic, Ltd.)

APOLLO and DOMAIN are registered trademarks of Apollo Computer Inc.

AEGIS, DGR, DOMAIN/BRIDGE, DOMAIN/DFL-100, DOMAIN/DQC-100, DOMAIN/Dialogue,
DOMAIN/IX, DOMAIN/Laser-26, DOMAIN/PCI, DOMAIN/SNA, D3M, DPSS, DSEE, GMR,
and GPR are trademarks of Apollo Computer Inc.

Apollo Computer Inc. reserves the right to make changes in specifications and other information
contained in this publication without prior notice, and the reader should in all cases consult
Apollo Computer Inc. to determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF APOLLO COMPUTER INC. HARDWARE
PRODUCTS AND THE LICENSING OF APOLLO COMPUTER INC. SOFTWARE CONSIST SOLELY OF THOSE
SET FORTH IN THE WRITTEN CONTRACTS BETWEEN APOLLO COMPUTER INC. AND ITS CUSTOMERS. NO
REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE~TIME PERFORMANCE,
SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A
WARRANTY BY APOLLO COMPUTER INC. FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY BY
APOLLO COMPUTER INC. WHATSOEVER.

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARISING
OUT OF OR RELATING TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT, EVEN IF APOLLO
COMPUTER INC. HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF SUCH
DAMAGES.

THE SOFTWARE PROGRAMS DESCRIBED IN THIS DOCUMENT ARE CONFIDENTIAL INFORMATION AND
PROPRIETARY PRODUCTS OF APOLLO COMPUTER INC. OR ITS LICENSORS.

N2




Preface

This manual consists of a section that introduces the system calls followed by sections that
describe a separate operating system manager (e.g., the process manager, stream manager, and
variable formatting package). The sections that describe the managers are in alphabetical
order by manager name and consist of a description of the data types used by the manager,
the syntax of the manager’s programming calls, and the error messages generated by the
manager. Each section is preceded by its own table of contents.

For easy organization, we have numbered the pages of by system manager. For example, the
third page in the ACLM section is page ACLM-3.

You should use this manual with the programming handbooks listed under Related Documents.
These programming handbooks give detailed instructions about using the programming calls.

Audience

This manual is intended for programmers who are writing application programs using DOMAIN
system calls. Readers of this manual should be familiar with FORTRAN, Pascal, or C and the
operating system as described in the DOMAIN System User’s Guide. This manual is not
intended as a tutorial document, but as a reference for programmers who need to use operating
system services.

Summary of Technical Changes

This manual has been reduced in size from two volumes to one. The GM and GPR programming
calls, which were previously documented here, are now documented separately. For GM calls,
refer to DOMAIN 2D Graphics Metafile Resource Call Reference, order no. 009793; for GPR
calls, refer to DOMAIN Graphics Primitive Routines Call Reference, order no. 007194.

In support of SR 9.5, the following new managers have been added:

CTM
FPP
PRF

In addition, the following calls have been added to existing managers:

MBX_$TIMED_OPEN
MS_$ADDMAP
MS_$CRTEMP
MS_$FW_PARTIAL
MS_$MK_PERMANENT
MS_$MK_TEMPORARY
MS_$NEIGHBORS
PAD_$FORCE_PROMPT
PAD_$IS_ICON

PREFACE-1 PREFACE



Related Documents

The Programming With General System Calls handbook, order no. 005506, documents how to
write programs that use standard DOMAIN system calls including the ACLM, CAL, EC2,
ERROR, MTS, NAME, PAD, PBUFS, PFM, PGM, PM, PROC1, PROC2, RWS, SIO, STREAM,
TIME, TONE, TPAD, and VFMT calls.

The Programming With System Calls for Interprocess Communication handbook, order no.
005696, documents how to write programs that use the DOMAIN interprocess facilities including
the MBX, MS, IPC, MUTEX, and EC2 calls.

Documentation Conventions

Unless otherwise noted in the text, this manual uses the following symbolic conventions.

UPPERCASE Uppercase words or characters in formats and command
descriptions represent keywords that you must use literally.

lowercase Lowercase words or characters in formats and command
descriptions represent values that you must supply.

[ ] Square brackets enclose optional items.
{ } Braces enclose a list from which you must choose an item.
| A vertical bar separates items in a list of choices.
< > Angle brackets enclose the name of a key on the keyboard.
CTRL/Z The notation CTRL/ followed by the name of a key indicates
a control character sequence. Hold down <CTRL> while you

type the character.

Horizontal ellipsis points indicate that you can repeat
the preceding item one or more times.

Vertical ellipsis points mean that we have omitted
irrelevant parts of a figure or example.

Problems, Questions, and Suggestions

We appreciate comments from the people who use our system. In order to make it easy for you
to communicate with us, we provide the User Change Request (UCR) system for software-related
comments, and the Reader’s Response form for documentation comments. By using these formal
channels, you make it easy for us to respond to your comments.

You can get more information about how to submit a UCR by consulting the DOMAIN System

Command Reference manual. Refer to the CRUCR (Create User Change Request) Shell
command description. You can view the same description on-line by typing:

$ HELP CRUCR <RETURN>

For documentation comments, a Reader’s Response form is located at the back of each manual.

PREFACE PREFACE-2

CJ



®

INTRODUCTION

 ACLM

CAL
CTM
EC2
ERROR
FPP
GMF
10S
I0S_DIR
IPC
MBX
MS
MTS
MUTEX
NAME
PAD
PBUFS
PFM
PGM
PM
PRF
PROC1
PROC2

RWS

Contents

CONTENTS-1

INTRO-1

ACLM-1

CAL-1

CTM-1

EC2-1

ERROR-1

FPP-1

GMF-1

I0S-1

I0S_DIR-1

IPC-1

MBX-1

MS-1

MTS-1

MUTEX-1

NAME-1

PAD-1

PBUFS-1

PFM-1

PGM-1

PM-1

PRF-1

PROCI1-1

PROC2-1

RWS-1



SIO

SMD

STREAM

TIME

TONE

TPAD

VFMT

CONTENTS=-2

SIO-1 .

SMD-1 —
STREAM-1
TIME-1
TONE-1
TPAD-1
VEC-1

VFMT-1

()




o

Introduction

This introductory section describes the DOMAIN system insert files and the format of the
information found in the sections that follow. Each of these sections consists of a description of
the data types used by a system manager, the syntax of the manager’s programming calls, and
the error messages generated by the system manager. We have arranged the sections of this

manual alphabetically, by system manager name.

DOMAIN Insert Files

The DOMAIN system provides insert files that define data types, constants, values, and routine
declarations. The insert files also define the exact form of each system call or routine. (Even the
FORTRAN version does this using comments, although the FORTRAN compiler doesn’t check
the forms that you use.)

The DOMAIN system routines are divided, by function, into several subsystems. Each subsystem
is controlled by a system manager. The routines of each subsystem are prefixed for easy
indentification. A subsystem prefix consists of a number of identifying characters followed by the
special underscore and dollar-sign characters, " _$." For example, the routines that perform
stream functions are prefixed with STREAM _$. These subsystem prefixes are also used to
distinguish DOMAIN data types and constants that are used by the subsystem routines.

Insert files are located in the directory /SYS/INS/. There is one insert file per subsystem for
each programming language. Include the appropriate insert file for your programming language.
For example, if you are using error routines in a Pascal program, you include the insert file,
/SYS/INS/ERROR.INS.PAS. Using the same routines in a FORTRAN program, you include
/SYS/INS/ERROR.INS.FTN. All insert files are specified using the syntax

/SYS/INS /subsystem-prefix.INS.language-abbreviation

where the language abbreviation is PAS (Pascal), FTN (FORTRAN), or C (C). The listing on
the next page shows all the available insert files. '

In addition to including required subsystem insert files in a program, you must always include the
BASE insert file for your programming language. You specify BASE insert files using the syntax

/SYS/INS/BASE.INS.language-abbreviation

These files contain some basic definitions that a nuraber of subsystem routines use.

INTRO=-1 INTRODUCTION



Summary of Insert Files

Insert File

Operating System Component

/SYS/INS/BASE.INS.lan
/SYS/INS/ACLM.INS.1lan
/SYS/INS/CAL.INS.1lan
/SYS/INS/CTM.INS.1lan
/SYS/INS/ERROR.INS.lan
/SYS/INS/EC2.INS.lan
/SYS/INS/FPP.INS.lan
/SYS/INS/GMF.INS.lan
/SYS/INS/GPR.INS.1lan
/SYS/INS/I0S.INS.1lan

/SYS/INS/I0S_DIR.INS.lan

/SYS/INS/IPC.INS.lan
/SYS/INS/KBD.INS.1lan
/SYS/INS/MBX.INS.lan
/SYS/INS/MS.INS.lan
/SYS/INS/MTS.INS.1lan
/SYS/INS/MUTEX.INS.lan
/SYS/INS/NAME.INS.lan
/SYS/INS/PAD.INS.lan
/SYS/INS/PBUFS.INS.lan
/SYS/INS/PFM.INS.lan
/SYS/INS/PGM.INS.1lan
/SYS/INS/PM.INS.lan
/SYS/INS/PRF . INS.PAS
/SYS/INS/PROC1 .INS.PAS
/SYS/INS/PROC2.INS.1lan
/SYS/INS/RWS.INS.lan
/SYS/INS/SIO.INS.1lan
/SYS/INS/SMD.INS.1lan

/SYS/INS/STREAMS.INS.lan

/SYS/INS/TIME.INS.lan
/SYS/INS/TONE.lan
/SYS/INS/TPAD.INS.lan
/SYS/INS/VEC.INS.1lan
/SYS/INS/VFMT.INS.lan

Base definitions -- must always be included
Access control list manager
Calendar

Color Table Manager

Error reporting

Eventcount

Floating Point Package
Graphics Map Files

Graphics Primitives

I/0 Switch Manager

I/0 Switch Directory
Interprocess communications datagrams
[Useful constants for keyboard keys]
Mailbox manager

Mapping server
Magtape/streams interface
Mutual exclusion lock manager
Naming server

Display Manager

Paste buffer manager

Process fault manager
Program manager

User process routines

Print File Manager

Process manager (Pascal only)
User process manager
Read/write storage manager
Serial I/O0

Display driver

Stream manager

Time

Speaker

Touchpad manager

Vector arithmetic

Variable formatter

VR
\

The suffix ".lan" varies with the high-level language that you’re using; it is either ".FTN",
" PAS", or ".C",
Organizational Information

This introductory section is followed by sections for each subsystem. The material for each
subsystem is organized into the following three parts:

1. Detailed data type information (including illustrations of records for the use of
FORTRAN programmers).

2. Full description of each system call.

3. List of possible error messages.

INTRODUCTION

INTRO=2



O

O

Data Type Sections

A subsystem’s data type section precedes the subsystem’s individual call descriptions. Each data
type section describes the predefined constants and data types for a subsystem. These
descriptions include an atomic data type translation (i.e., TIME _$REL_ABS_T = 4-byte
integer) for use by FORTRAN programmers, as well as a brief description of the type’s purpose.
Where applicable, any predefined values associated with the type are listed and described.
Following is an example of a data type description for the TIME $REL _ABS_ T type:

TIME $REL_ABS_ T A 2-byte integer. Indicator of type of time. One of
the following predefined values:

TIME _$RELATIVE
Relative time.

TIME _$ABSOLUTE
Absolute time.

In addition, the record data types are illustrated in detail. Primarily, we have geared these
illustrations to FORTRAN programmers who need to construct record-like structures, but we’ve
designed the illustrations to convey as much information as possible for all programmers. Each
record type illustration:

o Shows FORTRAN programmers the structure of the record that they must construct
using standard FORTRAN data type statements. The illustrations show the size and
type of each field.

o Describes the fields that make up the record.

o Lists the byte offsets for each field. These offsets are used to access fields
individually.

o Indicates whether any fields of the record are, in turn, predefined records.

INTRO=3 INTRODUCTION



The following is the description and illustration of the CAL _$TIMEDATE _REC _ T predefined

record:

CAL_$TIMEDATE REC_T

{)redefined byte:
ype offset

0:

10:

FORTRAN programmers should note that a Pascal variant record is a record structure that may
be interpreted differently depending on usage.

Readable time format. The
diagram below illustrates the
CAL_S$TIMEDATE REC T data type:

field name
integer year
integer month
integer day
integer hour
integer minute
integer second

Field Description:

year
Integer

month
Integer

day
Integer

hour
Integer
(24 nr.

minute
Integer

second
Integer

representing the year.

representing the month.

representing the day.

representing the hour
format) .

representing the minute.

representing the second.

In the case of variant records, as many

illustrations will appear as are necessary to show the number of interpretations.

INTRODUCTION

INTRO=-4

\_

)

@
N\



System Call Descriptions

We have listed the system call descriptions alphabetically for quick reference. Each system call
description contains:

e An abstract of the call’s function.

e The order of call parameters.

o A brief description of each parameter.

e A description of the call’s function and use.
These descriptions are standardized to make referencing the material as quick as possible.
Each parameter description begins with a phrase describing the parameter. If the parameter can
be declared using a predefined data type, the descriptive phrase is followed by the phrase ",in
XXX format" where XXX is the predefined data type. Pascal or C programmers, look for this
phrase to determine how to declare a parameter.
FORTRAN programmers, use the second sentence of each parameter description for the same
purpose. The second sentence describes the data type in atomic terms that you can use, such as
"This is a 2-byte integer.* In complex cases, FORTRAN programmers are referenced to the

respective subsystem’s data type section.

The rest of a parameter description describes the use of the parameter and the values it may
hold.

The following is an example of a parameter description:

access :
New access mode, 1in MS $ACC_MODE T format. This 1is a 2-byte integer.
Specify only one of the following predefined values:

MS_$R Read access.
MS_$WR Read and write access.
MS_$RIW Read with intent to write.

An object which is locked MS_$RIW may not be changed to MS_$R.

Error Sections

Each error section lists the status codes that may be returned by subsystem calls. The following
information appears for each error:

o Predefined constant for the status code.

o Text associated with the error.

INTRO=5 INTRODUCTION












ACLM

The ACLM (Access Control List Manager) programming calls control the protected subsystem
privilege level. This section describes their call syntax. The ACLM calls do not use special data
types or produce unique error messages. Refer to- the Introduction at the beginning of this
manual for a description of the call syntax format.

ACLM-1 ACLM




ACLM__$DOWN

ACLM _ $DOWN

Deasserts a program’s subsystem manager rights.

FORMAT
ACLM_$DOWN

USAGE

( This call deasserts a program’s rights to gain access to an object in a protected subsystem,

which were asserted by a previous call to ACLM _ $UP.

ACLM ACLM-2

O




O

ACLM_$UP

ACLM__ $UP

Asserts a program’s subsystem manager rights.

FORMAT
ACLM_$UP

USAGE

This call asserts a program’s rights to gain access to an object in a protected subsystem,
until a corresponding call to ACLM _$DOWN is made.

Access Control List manager (ACLM) calls are used by subsystem manager programs in
DOMAIN protected subsystems. A protected subsystem is a feature of the operating system
that ensures that access to certain objects is restricted to certain programs which are called
the managers of the subsystem that contains those objects.

In fact, even a subsystem manager, which has the right to gain access to the protected
objects, must call ACLM _ $UP to assert its rights before it can actually use a protected
object. Calling ACLM_ $DOWN deasserts a program’s rights as a subsystem manager.

We recommend that you activate your rights as a subsystem manager for the minimum
amount of time you will need them using ACLM _ $UP and ACLM _ $DOWN to bracket
high-level statements or functions for which you need these rights. This ensures against
inadvertent use of the protected objects.

Calling ACLM _ $UP increments a counter in your process; calling ACLM_ $DOWN
decrements it. Subsystem manager operations are enabled whenever the counter is nonzero.
Having a counter instead of a flag ensures that if one routine enables subsystem manager
rights, and calls a routine that enables and disables subsystem manager rights, the calling
routine does not inadvertently lose its rights.

Calling ACLM _ $UP obtains all the subsystem rights to which you are entitled. If a
program that is not a subsystem manager calls ACLM _ $UP, it produces no effect, but does
not return an error. Likewise, calling ACLM_$DOWN when subsystem manager rights
were already deasserted has no effect.

Protected subsystems and the reasons for using them are discussed completely in the
Administering Your DOMAIN System.

ACLM-3 ACLM




S/

O

\
.

/\










CAL

The CAL (Calendar) programming calls provide the calendar maintenance services. This section
describes their data types, call syntax, and error codes. Refer to the Introduction at the
beginning of this manual for a description of data type diagrams and call syntax format.

CAL-1 CAL



CAL DATA TYPES

CONSTANTS

CAL_$STRING _SIZE 80

DATA TYPES

CAL_$DPVAL_T

CAL_ $STRING_T

CAL

Size of an ASCII string.

A double-precision floating point value. A 2-element
array of 4-byte integers. (REAL*8 for FORTRAN
programs.)

An array of up to CAL_ $STRING __SIZE (80)
characters. An ASCII string.

CAL=-2

)

®




O

CAL_$TIMEDATE REC_T

predefined byte:
type offset

0:

10:

CAL DATA TYPES

6 integer, readable time format. The diagram
below illustrates the cal __$timedate _rec__t data

type:

field name
integer year
integer month
integer day
integer hour
integer minute
integer second

Field Description:

year
Integer representing the year.

month
Integer representing the month.

day
Integer representing the day.

hour
Integer representing the hour (24 hr.).

minute
Integer representing the minute.

second
Integer representing the second.

CAL-3 CAL



CAL DATA TYPES

CAL_$TIMEZONE_REC_T

predefined byte:
type offset
0:
2:
6:

time_$clock_t

10:

CAL_$TZ_NAME_T

CAL_ $WEEKDAY T

CAL

Specifies time difference and timezone name.

diagram below illustrates the
cal _$timezone __rec__t data type:

integer

char | char

char | char

integer

integer

Field Description:

utc__delta
Number of minutes difference from UTC.

tz__name
Time zone name.

drift
Drift adjustment.

field name

utc_delta

tz_name

drift

The

An array of up to 4 characters. Time zone name.

A 2-byte integer. Specifies the day of the week.
One of the following predefined values:

CAL_$SUN
Sunday

CAL_ $MON
Monday

CAL_$TUE
Tuesday

CAL_ $WED
Wednesday

CAL_ $THU
Thursday

CAL_ $FRI
Friday

CAL_$SAT
Saturday

CAL=~4

O




STATUS_$T

byte:
offset

CAL DATA TYPES

A status code. The diagram below illustrates the
STATUS _ $T data type:

field name
31 0
integer all
or
31
fail
24
subsys
16

modc

. 0

integer code

Field Description:

all
All 32 bits in the status code.

fail

The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

subsys
The subsystem that encountered the error (bits
24 - 30).

modc
The module that encountered the error (bits 16 -
23).

code

A signed number that identifies the type of error
that occurred (bits 0 - 15).

CAL=5 ' CAL



CAL_$ADD _ CLOCK

CAL_ $ADD _ CLOCK

Computes the sum of two times.

FORMAT
CAL_$ADD_CLOCK (clocki, clock2)

INPUT/OUTPUT PARAMETERS

clock1

Upon input The Coordinated Universal Time clock value to be added to clock2, in
TIME _$CLOCK _T format. This data type is 6 bytes long. See the
CAL Data Types section for more information.

Upon output The sum of clockl and clock2, in TIME _$CLOCK _ T format. This
data type is 6 bytes long. See the CAL Data Types section for more
information.

INPUT PARAMETERS

clock2 _
The Coordinated Universal Time clock value to be added to clockl, in
TIME _$CLOCK _ T format. This data type is 6 bytes long. See the CAL Data Types for
more information.

CAL

CAL=6




O

CAL_$APPLY _LOCAL_ OFFSET

CAL_$APPLY LOCAL _OFFSET

Computes the local time from a UTC time.

FORMAT :
CAL_$APPLY_LOCAL OFFSET (clock)

INPUT/OUTPUT PARAMETERS

clock

Upon input Coordinated Universal Time clock value to which a local time zone offset
will be added, in TIME _ $CLOCK _T format. This data type is 6 bytes
long. See the CAL Data Types section for more information.

Upon output Adjusted clock value, representing the local time equivalent of the input
parameter, in TIME __$CLOCK _ T format. This data type is 6 bytes
long. See the CAL Data Types section for more information.

USAGE

CAL_$APPLY_LOCAL_OFFSET adds the local time zone offset to the supplied clock

value.
To set the local time zone offset, you may either execute the Shell command TZ

(TIME _ ZONE) as described in the DOMAIN System Command Re ference Manual, or
you may use the CAL_ $WRITE _ TIMEZONE procedure.

CAL~-7 CAL




CAL_$CLOCK_TO_SEC

CAL_$CLOCK_TO_SEC

Converts system clock units to seconds.

FORMAT
seconds = CAL_$CLOCK_TO_SEC (clock)
RETURN VALUE

seconds
The computed equivalent of clock, in whole seconds. This is a 4-byte integer.

If the number of seconds calculated from the input value does not represent a whole
number, the fractional portion is truncated.

INPUT PARAMETERS
clock

The value to be converted, in TIME _$CLOCK _ T format. This data type is 6 bytes long.
See the CAL Data Types section for more information.

USAGE

CAL _$CLOCK _ TO _SEC converts a value in system clock representation (UTC) to an
equivalent value in whole seconds.

The system clock value represents a time in units of 4 microseconds.

CAL CAL=-8

@

O




O

CAL_ $CMP_ CLOCK

CAL_$CMP _ CLOCK

Compares the values of two times.

FORMAT
integer = CAL_$CMP_CLOCK (clockl, clock2)

RETURN VALUE

integer »
The result of the logical compare of clockl to clock2. This is a 2-byte integer.

Integer
returned
1 if clockl > clock2
(0] if «clockl = clock2
-1 if clockl < clock2

INPUT PARAMETERS

clockl
The Coordinated Universal Time clock value to be compared to clock2, in

TIME _ $CLOCK _T format. This data type is 6 bytes long. See the CAL Data Types
section for more information.

clock2
The Coordinated Universal Time clock value to be compared to clockl, in

TIME _$CLOCK _T format. This data type is 6 bytes long. See the CAL Data Types for
more information.

CAL-9 CAL



CAL_ $DECODE_ ASCII_DATE

CAL_$DECODE_ASCII_DATE

Decodes an ASCII string containing a date specification.

FORMAT
CAL_$DECODE_ASCII DATE (string, stringlength, year, month, day, status)

INPUT PARAMETERS

string
An ASCII character string, of length "stringlength" and in the form "year/month/day".
This is an array of up to 80 characters.

stringlength
The number of characters in the string. This is a 2-byte integer.

OUTPUT PARAMETERS

year
The year decoded from the string. This is a 2-byte integer.

month
The month decoded from the string. This is a 2-byte integer.

day
The day decoded from the string. This is a 2-byte integer.
status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the CAL
Data Types section for more information.
Possible values are:
CAL _$BAD_ SYNTAX
The string provided is not in "year/month/day" format.
CAL _$EMPTY _ STRING
The string length is zero or the string contains only spaces.
CAL _$OUT_ OF _RANGE
The value for month or day is invald.
USAGE

CAL _$DECODE _ ASCII_ DATE translates the ASCII date in the supplied string into
three integers representing the year, month, and day. The string must contain a year, a
month, and a day, separated by slashes.

If a year between 80 and 99 is specified, CAL _ $DECODE_ ASCII_ DATE adds 1900 to it

before returning. If a year between 0 and 79 is specified, 2000 is added.

Leading and trailing spaces are ignored.

CAL CAL-10

O




CAL_$DECODE_ ASCIl_ TIME

CAL_$DECODE _ ASCI_ TIME

Translates an ASCII string containing a time into integers.

FORMAT

CAL_$DECODE ASCII_TIME (string, stringlength, hour, minute, second, status)

INPUT PARAMETERS

string :
An ASCII character string of length "stringlength" in the form "hour:minute” or
"hour:minute:second”, in 24-hour format. This is an array of up to 80 characters.

stringlength

The number of characters in the string. This is a 2 -byte integer.

OUTPUT PARAMETERS

hour’
The hour decoded from the string. This is a 2-byte integer.

minute
The minute decoded from the string. This is a 2-byte integer.

second
The second decoded from the string. This is a 2-byte integer.

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the CAL
Data Types section for more information. Possible values are:

CAL_$BAD _SYNTAX

The string is not in either "hour:minute:second” or "hour:minute®
format.

CAL_$EMPTY _ STRING

String length is zero or the string contains only spaces.

CAL_$OUT_OF _RANGE

The supplied ASCII value for hour, minute, or second is invalid.

USAGE

CAL_$DECODE _ ASCII_ TIME translates the ASCII string into three integers,
representing hours, minutes, and seconds.

If the string specifies only hours and minutes, the value returned for seconds is zero.

Leading and trailing spaces are ignored.

CAL-11 CAL



CAL_$DECODE _ ASCII_ TZDIF

CAL _$DECODE _ASCII _TZDIF

Translates an ASCII string specifying a time zone into an offset from UTC.

FORMAT

CAL_$DECODE_ASCII_TZDIF (string. stringlength, tz-dif, tz-name, status)

INPUT PARAMETERS

string
An ASCII string containing a time zone name or time zone difference. This is an array of
up to 80 characters.

A time zone name is one of the following strings: (EST) Eastern Standard Time ,(EDT)
Eastern Daylight Time, (CST) Central Standard Time, (CDT) Central Daylight Time,
(MST) Mountain Standard Time, (MDT) Mountain Daylight Time, (PST) Pacific Standard
Time, (PDT) Pacific Daylight Time, (GMT) Greenwich Mean Time, and (UTC)
Coordinated Universal Time. These are the eight standard U.S. time zone names, plus
those for Greenwich Mean Time and Coordinated Universal Time.

A time zone difference is a value which, when added to Coordinated Universal Time,
produces the local time. Specify a time zone difference in the following form:
[ + | - Jhour:minute

The hour must be a number between 0 and 12; the minute must be 0 or 30. The sign is
optional. For example, Eastern Daylight Time may be represented as -4:00.

stringlength
The number of characters in the string. This is a 2-byte integer.
OUTPUT PARAMETERS
tz-dif
The difference, in minutes, between the time zone specified in string and UTC. This is a

2-byte integer.

The value of tz-dif is negative for time zones west of the Greenwich Meridian and positive
for time zones east of the Greenwich Meridian.

tz-name

The time zone name, in CAL__ $TZ_NAME _ T format. This is an array of up to 4
characters.

If the ASCII string contains a time zone name, this procedure returns that name in tz-name.
If the ASCII string contains a time zone difference, this procedure returns spaces in tz-name.

CAL CAL~-12




CAL_ $DECODE_ASCII_ TZDIF

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the CAL
Data Types section for more information. Possible values are:

CAL _$EMPTY _ STRING
String length is zero or the string contains only spaces.

CAL_ $UNKNOWN _ TIMEZONE

The string contains a time zone name that is unknown to this procedure.

CAL_$BAD _ SYNTAX

The string appears to contain a time zone difference but is syntactically
incorrect.

CAL_$INVALID _TZDIF

The string contains a time zone difference, but the number of hours is
greater than 12 or the number of minutes is not 0 or 30.

USAGE
CAL _ $DECODE__ ASCII__ TZDIF translates the supplied ASCII string into an offset from

UTC, in units of minutes. The ASCII string can contain a time zone name or a time zone
difference.

CAL-13 CAL



CAL_$DECODE_ LOCAL_TIME

CAL_$DECODE_LOCAL_TIME

~
Returns the local time in integer format. N
FORMAT
CAL_$DECODE_LOCAL_TIME (decoded clock)
OUTPUT PARAMETERS
decoded __clock
The local time, in CAL_$TIMEDATE _REC _ T format. This data type is 12 bytes long.
See the CAL Data Types section for more information.
USAGE
CAL _$DECODE_ LOCAL _ TIME returns the local time in "year, month, day, hour, TN
minute, second” format. (\ J‘
TN
N

CAL CAL~-14




O

CAL_$DECODE_ TIME

CAL_$DECODE_ TIME

Translates an internal system clock value into a readable date and time.

FORMAT
CAL_$DECODE TIME (clock, decoded_clock)

INPUT PARAMETERS

clock

The value to be translated, in TIME_$CLOCK _ T format. This data type is 6 bytes long.
See the CAL Data Types section for more information.

OUTPUT PARAMETERS

decoded _ clock
A date and time, in CAL__ $TIMEDATE _ REC_ T format. This data type is 12 bytes
long. See the CAL Data Types section for more information.

USAGE

CAL__$DECODE _ TIME translates a time in TIME _$CLOCK _ T form into
CAL_ $TIMEDATE _REC_ T ("year, month, day, hour, minute, second") form.

This routine translates clock values, such as those returned from the TIME _$CLOCK,
CAL__$GET _LOCAL_ TIME, CAL_ $APPLY_LOCAL _ OFFSET, and
CAL _ $ENCODE TIME routines.

CAL-15 CAL




CAL_$ENCODE_ TIME

CAL_$ENCODE_ TIME

Translates a date and time from integer format into a system clock representation.

FORMAT
CAL_$ENCODE_TIME (decoded_clock, clock)

INPUT PARAMETERS

decoded _ clock
A date and time, in CAL_$TIMEDATE _REC _ T format. This data type is 12 bytes
long. See the CAL Data Types section for more information.

OUTPUT PARAMETERS

clock
The system clock equivalent value of decoded __clock, in TIME _$CLOCK _ T format. This
data type is 6 bytes long. See the CAL Data Types section for more information.

USAGE

CAL_ $ENCODE _ TIME translates the date and time specified by decoded __clock into the
equivalent system representation.

CAL CAL~16

//\\

N

TN,
()




CAL_$FLOAT _CLOCK

CAL_ $FLOAT _ CLOCK
Converts a system clock representation to the equivalent number of seconds, in

double-precision floating-point format.

FORMAT
CAL_$FLOAT CLOCK (clock, float_seconds)

INPUT PARAMETERS

clock

The value to be converted, in TIME _ $CLOCK _ T format. This data type is 6 bytes long.
See the CAL Data Types section for more information.

OUTPUT PARAMETERS

float _seconds
The converted value of clock, in seconds. This is in double-precision floating-point

(REAL*8) format.
USAGE

CAL _$FLOAT _CLOCK converts a clock value in UTC format to the equivalent number
of seconds expressed as a double-precision floating-point number.

Unlike CAL_$CLOCK _TO_ SEC, CAL_$FLOAT _ CLOCK does not truncate the
fractional portion of the conversion.

CAL=17 CAL



CAL_$GET_INFO

CAL_$GET _INFO

Returns local time zone information.

FORMAT
CAL_$GET_INFO (timezone_ info)

OUTPUT PARAMETERS

timezone _info

A record containing the name of the local time zone and its offset from UTC, in
CAL _$TIMEZONE_REC__ T format. This data type is 12 bytes long. See the CAL Data

Types section for more information.

USAGE

CAL _$GET _INFO returns the name of the local time zone and the difference between
local time and Coordinated Universal Time (UTC).

CAL

CAL~-18

N

™



O

O

CAL_$GET_LOCAL_TIME

CAL_$GET _LOCAL_TIME

Returns the current local time in system clock representation.

FORMAT
CAL_$GET_LOCAL__TIME (clock)
OUTPUT PARAMETERS
clock
The current local time, in TIME _$CLOCK _ T format. This data type is 6 bytes long. See

the CAL Data Types section for more information.

This is the number of 4-microsecond periods that have elapsed since January 1, 1980, 00:00.

CAL=~19 CAL




CAL_$REMOVE_ LOCAL _ OFFSET

CAL_$REMOVE _ LOCAL_ OFFSET

Computes the UTC time from local time.

FORMAT
CAL_$APPLY LOCAL_OFFSET (clock)

INPUT/OUTPUT PARAMETERS

clock

Upon input Local time from which the local time offset will be removed, in
TIME _ $CLOCK _ T format. This data type is 6 bytes long. See the
CAL Data Types section for more information.

Upon output Adjusted clock value, representing the UTC equivalent of the input
parameter, in TIME_ $CLOCK _ T format. This data type is 6 bytes
long. See the CAL Data Types section for more information.

USAGE

CAL_$REMOVE _ LOCAL _ OFFSET subtracts the local time zone offset from the
supplied clock value.

To set the local time zone offset, you may either execute the Shell command TZ

(TIME __ZONE) as described in the DOMAIN System Command Reference, or you may
use the CAL _ $WRITE _ TIMEZONE procedure.

CAL CAL=-20

®

=

e



O

O

CAL_$SEC_TO_ CLOCK

Converts seconds to system clock units.

FORMAT
CAL_$SEC_TO_CLOCK (seconds, clock)

INPUT PARAMETERS

seconds

The value to be converted. This is a 4-byte integer.

OUTPUT PARAMETERS

clock

CAL_$SEC_TO_CLOCK

The computed equivalent of seconds, in TIME __$CLOCK __ T format. This data type is 6

bytes long. See the CAL Data Types section for more information.

USAGE

CAL _$SEC__TO_ CLOCK converts a value representing seconds to an equivalent value in

4-microsecond units.

No overflow detection is performed.

CAL=~-21

CAL



CAL__$SUB_ CLOCK

CAL_$SUB__ CLOCK

Subtracts the values of two times.

FORMAT
value = CAL $SUB_CLOCK (clockl, clock2)

RETURN VALUE

value

The Boolean result of the subtraction of clock2 from clockl. The returned value is TRUE if
the result is >=0.

INPUT/OUTPUT PARAMETERS

clock1

Upon input The Coordinated Universal Time clock value from which clock?2 is
subtracted, in TIME _$CLOCK _ T format. This data type is 6 bytes
long. See the CAL Data Types section for more information.

Upon output The difference between clockl and clock2, in TIME_$CLOCK _ T
format. This data type is 6 bytes long. See the CAL Data Types section
for more information.

INPUT PARAMETERS

clock?2
The Coordinated Universal Time clock value to be subtracted from clockl, in
TIME _ $CLOCK _ T format. This data type is 6 bytes long. See the CAL Data Types
section for more information.

CAL CAL=-22

e _//

)

N



CAL_ $WEEKDAY

CAL _$WEEKDAY

Computes the day of the week given a year, month, and day.

FORMAT
weekday = CAL_$WEEKDAY (year, month, day)

RETURN VALUE

weekday
The computed day of the week, in CAL_ $WEEKDAY _ T format. This is a 2-byte

integer. Returns one of the following predefined values:

CAL_$SUN, CAL_$MON, CAL_$TUE, CAL_$WED,
CAL_$THU, CAL_$FRI, CAL_$SAT.

Their ordinal values are 0 through 6.

INPUT PARAMETERS

year
The year for which the weekday is desired. This is a 2-byte integer.

month
The month for which the weekday is desired. This is a 2-byte integer.

day
The day of the month for which the weekday is desired. This is a 2-byte integer.

USAGE
CAL _$WEEKDAY computes the day of the week for any Gregorian date.

CAL=-23 CAL



CAL_$WRITE_ TIMEZONE

CAL_$WRITE _TIMEZONE

Writes local time zone information onto the boot volume.

FORMAT
CAL_$WRITE_TIMEZONE (timezone_info, status)

INPUT PARAMETERS
timezone_ info
The time zone information to be recorded, in CAL _ $TIMEZONE _ REC __ T format. This

data type is 12 bytes long. See the CAL Data Types section for more information.

The supplied time zone information includes the name of the time zone and its offset form
UTC.

OUTPUT PARAMETERS

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the CAL
Data Types section for more information.

USAGE

CAL _ $WRITE _ TIMEZONE writes the supplied time zone information onto the logical
disk volume from which the operating system was started.

This procedure is invalid on a diskless node, and returns a nonzero status.

The time zone information written by this procedure is used by subsequent calls to
CAL _$DECODE_LOCAL _ TIME, CAL_ $GET _LOCAL _ TIME,
CAL_$APPLY_LOCAL_ OFFSET, and CAL__$GET _ INFO.

A nonzero status indicates a system problem in reading or writing the volume.

CAL CAL-24

7N
S

C



@

ERRORS

STATUS _$0OK

Successful completion.

CAL _$BAD _SYNTAX

Invalid syntax for date or time specification.

CAL_$EMPTY_ STRING

An empty string was passed to a decode routine.

CAL_ $INVALID _ TZDIF

Invalid time-zone difference.

CAL_$OUT_OF _RANGE

Date or time specification invalid.

CAL_$UNKNOWN _ TIMEZONE
Timezone specified is unknown.

CAL=-25

CAL ERRORS

CAL












O

O

CTM

The CTM (Color Table Manager) programming calls allow different GPR applications running on
the same node to share the color map without interfering with each other. This section describes
their data types, call syntax, and error codes. Refer to the Introduction at the beginning of this

manual for a description of data type diagrams and call syntax format.

CTM-1

CT™



CTM DATA TYPES

DATA TYPES

GPR_$PIXEL_VALUE T

CMT _$PIXEL _VALUE_VECTOR_T

CTM_$ALLOC_ OPTIONS_ T

CT™M

A 4-byte integer. Defines an index into the color
map to identify the color of an individual pixel.

An array of GPR_$PIXEL_VALUE_ T that stores
multiple pixel values.

A 2-byte integer. Identifies the type of pixel values
that can be affected by a CTM call. Specify only
one of the following predefined values:

NONE

If you specify 0 for FORTRAN/C or [ ] for
Pascal, then any available pixel value is
returned.

CTM_ $CONTIGUOUS

The allocated pixel values must be contiguous.

In this case, only the smallest pixel value in
the range is returned.

CTM_ $ZERO_ ONLY

Only pixel values with zero in a given plane
will be allocated. If the plane is greater than
or equal to zero, then this parameter specifies
which plane must have zero bits. If the plane
is less than 0, then the CTM package will
choose a plane and return it

CTM_$ONE_ ONLY
This is similar to CTM_$ZERO_ONLY except

that the plane in question must contain only
ones.

CTM_$BOTH

Pairs of pixel values will be allocated where
the two members of each pair differ only in
the given plane. If the plane is less than zero,
the CTM package selects a plane for you.

CTM=-2




O

STATUS_$T

byte:
offset

CTM DATA TYPES

A status code. The diagram below illustrates the
STATUS _$T data type:

field name
31 0
integer all
or
31
fail
24
subsys
16

modc

. 0

integer code

Field Description:

all
All 32 bits in the status code.

fail

The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

subsys
The subsystem that encountered the error (bits
24 - 30).

modc
The module that encountered the error (bits 16 -
23).

code

A signed number that identifies the type of error
that occurred (bits 0 - 15).

CTM=-3 CT™M



CTM_$ALLOC_PV

CTM_ $ALLOC_PV

Allocates available pixel values and sets their use counts to one.

FORMAT

CTM_$ALLOC_PV (count, opt, plane, pixel values, status)

INPUT PARAMETERS

count
Specifies the number of pixel values (or pixel value pairs). This parameter is a 2-byte
integer.

opt
Specifies the constraints placed on pixel values to be allocated, in
CTM__$ALLOC_OPTIONS _T format. This parameter is a 2-byte integer. Specify only
one of the following values:

NONE If you specify 0 for FORTRAN /C or [ | for Pascal, then any available

pixel values are returned.

CTM _ $CONTIGUOUS
The allocated pixel values must be contiguous. In this case, only the
smallest pixel value in the range is returned.

CTM _$ZERO _ ONLY
Only pixel values with zero in a given plane will be allocated. If the
plane is greater than or equal to zero, then this parameter specifies which
plane must have zero bits. If the plane is less than 0, then the CTM
package will choose a plane and return it.

CTM_$ONE_ ONLY
This is similar to CTM _ $ZERO _ ONLY except that the plane in
question must contain only ones.

CTM_$BOTH Pairs of pixel values will be allocated where the two members of each pair
differ only in the given plane. If the plane is less than zero, the CTM
package selects a plane for you. If this option is selected, the count
parameter specifies the number of pairs, and the returned pixel _values
parameter will contain only the smallest (i.e., zero bit) number of each
pair.

INPUT/OUTPUT PARAMETERS

plane
Specifies the bit plane required by the opt parameter. This parameter is a 2-byte integer.

OUTPUT PARAMETERS
pixel _values

The allocated pixel values, in CTM _ $PIXEL _VALUE_VECTOR __T format. This
parameter is an array of 4-byte integers.

CTM CTM~4

\_




CTM__$ALLOC_PV

status
The completion status, in STATUS _$T format. This parameter is 4 bytes long. See the
CTM Data Types section for more information.

USAGE

The CTM _$ALLOC _PV routine searches for pixel values that have use counts of zero and
also satisfy the constraints specified by the opt parameter. The allocated values are
returned in the pixel _values parameter, and their use counts are set to one.

The CTM (Color Table Manager) package operates on a data base of pixel values that is
shared by all processes using GPR in direct mode or frame mode. The CTM calls allow
different applications running on the same node to share the color map without interferring
with one another.

Note that borrow mode applications have a separate, private copy of the color map, which
is initialized to default values by GPR _ $INIT.

The concept of a shared color map corresponds to the fact that there is a single physical
color map for the display device. For example, if process A calls
GPR_$SET_ COLOR _MAP, and process B calls GPR__$INQ__ COLOR _ MAP for the

same pixel values, process B will see the changes made by process A.

The CTM package keeps track of how many processes can access a pixel value by
maintaining a use count for each pixel value. All pixel values except those preallocated by
the Display Manager (see below) have an initial use count of zero which means that they are
available for allocation.

As each process gains access to a pixel value, the pixel value’s use count is incremented.
For example, if five processes are sharing a pixel value, its use count is five. When a
process releases a pixel value (using CTM__ $RELEASE _ PV), its use count is decremented.
When the use count reaches zero, the pixel value can be reallocated.

The CTM routines are "advisory" in nature, and do not affect the validity of calls to

GPR _$SET_COLOR _MAP. Any pixel value may be set by any program, including the
pixel values used by the Display Manager for window colors. The Display Manager
preallocates values 0, 1, and 7 through 15. However, the Display Manager will release pixel
values 8 through 15 when you use the MONO command (see DOMAIN System Command
Re ference).

The total number of available pixel values depends on the display type and the number of
planes on the node as follows:

Display Type Available Pixel Values
Monochrome 2

4-plane color 16

8-plane color 256

Even monochrome displays have "color maps". Monochrome color maps control whether
the display is operating in white-on-black or black-on-white. For example, applications can
invert the display by calling GPR_$SET _ COLOR _ MAP for pixel values zero and one,
specifying the colors white and black, as desired. This feature is available in direct, frame,
and borrow mode.

CTM=5 CTM



CTM_$ALLOC_PV

Using the CTM Routines

Include the insert file /sys/ins/ctm.ins.pas, /sys/ins/ctm.ins.c, or /sys/ 1ns/ ctm.ins.ftn in
programs that use the CTM package.

The easiest way to use the CTM package is for all processes to use
CTM_$FIND _ COLOR. In this way, the CTM package takes care of all the
"bookkeeping" and you can access any color that you need. For example, if process A
wants to use light blue, it supplies the pixel value (200,200,255) to
CTM__$FIND _ COLOR. If the color is in the color map, the CTM package increments its
use count, making it available to process A. If light blue is not in the color map, CTM
creates a light blue entry in the color map and increments its use count. If process B wants
to use the same color, it also makes a call to CTM _ $FIND _ COLOR.

If you want to allocate colors yourself, use CTM_ $ALLOC_PV. You may want to do this
if you plan to change the color values and don’t want to affect other processes (and don’t
want other processes to hinder your use of the color map). When you use

CTM _$ALLOC _PV, there are two ways that other processes can use the values:

1. Use CTM_ $MARK _READ _ ONLY to make the pixel values available to
other processes. This call marks the pixel values as read-only and other
processes that use CTM_$FIND _ COLOR can use them (but they cannot
change them).

2. This method involves sharing data between processes or between independent
components of the same process (for example, passing parameters between
processes or using the C functions fork or pipe). If you obtain pixel values from
another process and that process might terminate first (or might release the
pixel values first), you can use CTM__$INC_USE__ COUNT to indicate your
intent to continue using those pixel values.

When you are through using a set of pixel values, you can release them using
CTM__$RELEASE_ PV. This routine decrements the use count of selected pixel values.
When a pixel value’s use count reaches zero, it is available for reallocation. The CTM
package automatically decrements the use count of any pixel values that have been
allocated by a program when the program terminates.

Using the CTM _$ALLOC_PYV Options

If your application needs to change colors frequently, the easiest method is to use

CTM _$ALLOC _PV with no options. Use the options when you need to perform more
sophisticated tasks such as redrawing a portion of an image in a different color. An
example of this is performing an XOR raster operation when rubberbanding a line or
dynamically dragging an object across the screen (see GPR_$SET__RASTER_ OP for
more information on raster operations).

When dragging an object across the screen, an application needs to repeatedly redraw and
erase the object without disturbing the existing geometry. In an XOR operation, when a
dragged object crosses an existing piece of geometry, each intersection point is redrawn in a
different color. After the object passes by, the intersection point is redrawn in its original
color.

XOR operations work well on monochrome nodes but on a color node it is faster to
explicitly set the draw value to one or zero.

CTM CTM=6

N

N




O

CTM_ $ALLOC_PV

For example, assume that your application is drawing in red, green, and blue, and wants to
draw intersection points in black. Use the following procedure:

1. Use CTM_ $ALLOC_ PV with the CTM _ $BOTH option to allocate three
pairs of pixel values. The values in each pair differ only in one plane. '

2. Use GPR_$SET__ COLOR _MAP to assign red, green, and blue to the first
elements in each pair and assign black to the second element in each pair. For
example, the following illustration shows three pixel value pairs that differ only
in one plane:

Pixel Value Pairs

1
3

Binary Representation

Assigned Color

red
black

blue
black

green
black

3. Use GPR_$SET_PLANE_ MASK to limit operations to the two planes.

4. Use the default raster operation (GPR_$SET_RASTER _ OP operation 3).

Drawing ones in the allocated plane changes the image from its original color to black.
Switching back to zeros reverts the image to its original color.

CTM=7

CT™M



CTM__$FIND _ COLOR

CTM_$FIND _COLOR

Searches for a pixel value (within a specified distance) that already contains a desired color.
If one does not exist, a new pixel value is allocated and set to the desired color.

FORMAT
CTM_$FIND_COLOR (color, max_distance, pixel value, status)

INPUT PARAMETERS

color
The desired color, in GPR_$COLOR _ T format. This parameter is a 4-byte integer that
specifies values for red, green, and blue.

max__distance
A distance in the color space (see Usage). This parameter is a 2-byte integer.

OUTPUT PARAMETERS

pixel _value
The resulting color value, in GPR_$PIXEL _VALUE _ T format. This parameter is a
4-byte integer.

status
The completion status, in STATUS _$T format. This parameter is 4 bytes long. See the
CTM Data Types section for more information.

USAGE

This routine treats the RGB color space as though it were ordinary 3D geometry. That is,
the distance between two color values is the square root of the sum of the squares of the
absolute differences in RGB intensity.

CTM _$FIND _ COLOR searches for a pixel value that already contains the desired color
within the specified distance. First it searches the pixels marked read-only (see
CTM_$MARK _READ _ ONLY). If the value is found, the routine increments the pixel’s
use count. Otherwise, a new pixel value is allocated, set to the specified color, and marked
read-only. The routine uses GPR_$INQ__COLOR _ MAP to determine current color
settings and GPR__$SET _ COLOR _ MAP to establish new colors.

This procedure finds the best match, not the first match. Therefore, if you want the closest
existing pixel value, use lastof(integer) for the max_ distance parameter.

CTM CTM=8




CTM_ $INC_USE_ COUNT

CTM_$INC_USE_ COUNT

Increments the use count of previously allocated pixel values.

FORMAT

CTM_$INC_USE COUNT (count, opt, plane, pixel values, status)

INPUT PARAMETERS

count

Specifies the number of pixel values (or pixel value pairs). This parameter is a 2-byte
integer.

opt
Specifies the constraints placed on pixel values to be allocated, in
CTM_ $ALLOC_OPTIONS _ T format. This parameter is a 2-byte integer. Possible
values are the following:

CTM__ $CONTIGUOUS
CTM_$ZERO_ ONLY
CTM__$ONE_ ONLY
CTM_ $BOTH

plane
Specifies the bit plane required by the opt parameter. This parameter is a 2-byte integer.

pixel _ values

The allocated pixel values, in CTM _ $PIXEL_ VALUE__VECTOR _ T format. This
parameter is an array of 4-byte integers.

OUTPUT PARAMETERS

status
The completion status, in STATUS _ $T format. This parameter is 4 bytes long.

USAGE

If you obtain pixel values from another process, and that process might terminate first (or
might release the pixel values first), you can use this routine to indicate your intent to
continue using those pixel values.

Only use this call if you are sharing data between processes or between independent
components of the same process (for example, passing parameters between processes or using
the C functions fork or pipe). If you are accessing pixel values using
CTM_$FIND _ COLOR, you don’t need to use this call since CTM_ $FIND _ COLOR

automatically increments the use count for you.

The use count is a 16-bit word that can take on any non-negative value. If the value is
zero, it signifies that the pixel value is available to be allocated (see Usage under
CTM_$ALLOC _PV for more information).

The count, opt, and plane arguments are used only to determine the actual pixel values
specified in the pixel _values parameter.

CTM=-9 CT™M



CTM_$MARK_READ _ONLY

CTM_$MARK _READ _ONLY

Marks pixels as shareable by other processes. Shareable pixel values may be allocated using

CTM _ $FIND _ COLOR.

FORMAT
CTM_$MARK_READ ONLY (count, opt, plane, pixel values, status)

INPUT PARAMETERS

count
Specifies the number of pixel values (or pixel value pairs). This parameter is a 2-byte
integer.

opt
Specifies the constraints placed on pixel values to be allocated, in
CTM _$ALLOC _OPTIONS _ T format. This parameter is a 2-byte integer. Possible
values are the following:

CTM_ $CONTIGUOUS
CTM_ $ZERO_ ONLY
CTM_$ONE__ONLY
CTM_ $BOTH

See CTM _ $ALLOC _PV for more information.

plane
Specifies the bit plane required by the opt parameter. This parameter is a 2-byte integer.

pixel _values
The allocated pixel values, in CTM_ $PIXEL_ VALUE__VECTOR _T format. This
parameter is an an array of 4-byte integers.

OUTPUT PARAMETERS

status
The completion status, in STATUS _ $T format. This parameter is 4 bytes long. See the
CTM Data Types section for more information.

USAGE

If you obtain pixel values using CTM _ $ALLOC _ PV, the CTM package assumes that you
will change the colors assigned to these pixel values from time to time. If you do not plan
to change the colors, you may make them available to other programs that call

CTM _$FIND _ COLOR. To make them available, you call

CTM _$MARK _READ _ONLY after calling GPR__$SET_COLOR _MAP.

CTM CTM-10

N




—

CTM_$RELEASE_ PV

CTM_ $RELEASE PV

Decrements the use count of selected pixel values. A pixel value is made available to other
processes when its use count reaches zero.

FORMAT

CTM_$RELEASE PV (count, opt, plane, pixel_values, status)

INPUT PARAMETERS

count

Specifies the number of pixel values (or pixel value pairs). This parameter is a 2-byte
integer.

opt
Specifies the constraints placed on pixel values to be released, in
CTM_$ALLOC_ OPTIONS _ T format. This parameter is a 2-byte integer. Possible
values are the following:

CTM_ $CONTIGUOUS
CTM_$ZERO_ ONLY
CTM_$ONE__ONLY
CTM_ $BOTH

See CTM _$ALLOC _ PV for more information.

plane
Specifies the bit plane required by the opt parameter. This parameter is a 2-byte integer.

pixel _values

The released pixel values, in CTM_$PIXEL_ VALUE_ VECTOR _ T format. This
parameter is an array of 4-byte integers.

OUTPUT PARAMETERS

status

The completion status, in STATUS_$T format. This parameter is 4 bytes long. See the
CTM Data Types section for more information.

USAGE

When you are finished using a set of pixel values, you should return them using this
routine. The routine decrements the use count. When the use count reaches zero, the pixel
values will be available to other callers. If you don’t make this call, any pixel values you
have allocated will be automatically released when your program terminates execution.

An error is returned if you attempt to decrement a use count below zero or if you attempt

to decrement a use count that you (your process, at or above the current program level)
have not previously incremented.

CTM=~11 CT™M



CTM ERRORS

ERRORS

STATUS _$0K

Successful completion.

CTM__$NOT _ALLOCATED
The pixel values specified by CTM _$RELEASE PV, CTM _ $INC_ USE__ COUNT,
or CTM_$MARK _READ _ ONLY were not allocated. Pixels values must be
allocated by CTM _$ALLOC _PV or CTM _ $FIND _ COLOR before they can be
used by other CTM calls.

CTM_$CAN’T
The CTM package was unable to allocate the requested pixel values because there is
no more space available in the color map. Either use GMR _$FIND __COLOR to
locate an appropriate color that is already allocated, or use CTM_ $RELEASE PV
to deallocate values.

CTM _$NO_ SPACE
The CTM package was unable to allocate memory for its tables.

CT™ CTM=-12

/’\

N




o




O

o




O

EC2

The EC2 (Level 2 Eventcount) programming calls create and manage eventcounts for
synchronizing program events. This section describes their data types, call syntax, and error

codes. Refer to the Introduction at the beginning of this manual for a description of data type
diagrams and call syntax format.

EC2-1 EC2



EC2 DATA TYPES

CONSTANTS

EC2_$ALWAYS_ _READY_ EC 1

DATA TYPES

EC2_$EVENTCOUNT _T

predefined byte:
type offset
0:
4:

EC2_$PTR_LIST T

EC2_$PTR_T

EC2_$VAL_LIST_T

EC2

Replaces an EC2__$PTR pointer to indicate that
the event is always ready.

An eventcount. The diagram below illustrates the
EC2_$EVENTCOUNT _ T data type:

field name

integer value

integer awaiters

Field Description:

value
The value of the eventcount.

awaiters
Reserved for internal use by the EC2 manager.

An array of up to 32 pointers to eventcounts. Each
pointer is a 4-byte integer in EC2_$PTR_ T
format.

A 4-byte integer. A pointer to an eventcount.

An array of trigger values for each of the

eventcounts in an eventcount pointer list. Each
trigger value is a positive, 4-byte integer.

EC2=-2

=

TN

N




O

@

STATUS_ $T

EC2 DATA TYPES

A status code. The diagram below illustrates the
STATUS _$T data type:

byte: field name
offset
31 0
0: integer all
or
31
0: fail
24
subsys
16
1: modc
. 0
2: integer code

Field Description:

all
All 32 bits in the status code.

fail

The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

subsys
The subsystem that encountered the error (bits
24 - 30).

mode
The module that encountered the error (bits 16 -
23).

code
A signed number that identifies the type of error
that occurred (bits 0 - 15).

EC2-3 EC2



EC2_$ADVANCE

EC2_$ADVANCE

Advances the specified user-defined eventcount by one.

FORMAT

EC2_$ADVANCE (eventcount, status)

INPUT/OUTPUT PARAMETERS

eventcount
Eventcount to be advanced, in EC2_ $EVENTCOUNT _ T format. This data type is 6
bytes long. See the EC2 Data Types section for more information.

OUTPUT PARAMETERS

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the EC2
Data Types section for more information.

USAGE

EC2__$ADVANCE advances a user-defined eventcount; do not use this call to advance a
system-defined eventcount. A user-defined eventcount is one that a process establishes with

EC2_ $INIT.

In order to advance an eventcount, you must have read and write access to the emory
location where the eventcount is located. Typically, the eventcount is in a mapped file, and
you should use MS__ $MAPL to map this file.

When you map a file containing an eventcount, you should request a shared write lock.
Only processes on the same node can concurrently get shared write locks on the same file.
See MS_ $MAPL for more information about mapping a file.

EC2 EC2-4




EC2_ $INIT

EC2_ $INIT

Initializes a user-defined eventcount.

FORMAT

EC2_$INIT (eventcount)

INPUT PARAMETERS

None.

OUTPUT PARAMETERS

eventcount
Initialized eventcount, in EC2_$EVENTCOUNT _T format. This data type is 6 bytes
long. See the EC2 Data Types section for more information.

USAGE

Use this call to initialize a user-defined eventcount. Initialize the eventcount within a file
that several programs will share. First, map the file for shared write access (by requesting a
shared write lock.) Then use EC2_ $INIT to initialize the eventcount. All programs that
use the eventcount must first map the file containing the eventcount. See the Mapped
Segment (MS) calls for more information on mapping.

Do not use EC2_ $INIT to initialize a system-defined eventcount; the system automatically
initializes eventcounts associated with system events. To use a system-defined eventcount,
use the system call that gets the address of the eventcount you want to wait on. For
example, use MBX _$GET _EC to get the address of a mailbox eventcount.

EC2-5 EC2



EC2_ $READ

EC2_$READ

Returns the current value of an eventcount.

FORMAT

ec-value = EC2_$READ (eventcount)

RETURN VALUE

ec-value
Value of the eventcount. This is a positive, 4-byte integer.

INPUT PARAMETERS

eventcount

Eventcount, in EC2__ $EVENTCOUNT _ T format. This data type is 6 bytes long. See

the EC2 Data Types section for more information.

OUTPUT PARAMETERS

None.

USAGE

Use EC2__$READ to read the value of an eventcount.

EC2 EC2-6

®



O

EC2_ $WAIT

EC2_ $WAIT

Waits until any of a list of eventcounts reaches or exceeds a trigger value.

FORMAT

ec-satisfied = EC2 $WAIT (ec-plist, ec-vlist, ec-count, status)

RETURN VALUE

ec~satisfied

An ordinal number indicating the eventcount that is satisfied. This is a positive, 2-byte
integer.

INPUT PARAMETERS

ec-plist
Array of pointers to eventcounts. Each pointer is a 4-byte integer in EC2_$PTR__ T
format. The total number of eventcounts in ec-plist lists in any one node cannot exceed 32.

ec~-vlist
Array of trigger values for each of the eventcounts in the ec-plist. Each trigger value is a
positive, 4-byte integer. When any of the eventcounts fram the ec-plist reaches its trigger
value, the EC2__ $WAIT call returns.

ec-count .
Number of eventcounts in the ec-plist. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the EC2
Data Types section for more information.

USAGE

EC2__$WAIT waits until one of the eventcounts in the ec-plist reaches its trigger value in
the ec-vlist. When an eventcount reaches its trigger value, EC2__$WAIT returns an index
value indicating the position (in the ec-plist) of the eventcount that is satisfied. The index
starts from 1; that is, ec-satisfied equals 1 if the first eventcount in the ec-plist is satisfied.

Several eventcounts may have been satisfied by the time this call wakes your program. The
index number returned refers to only one of the eventcounts. If more than one eventcount
is satisfied, EC2_ $WAIT returns the one with the smallest subscript.

EC2_$WAIT only returns when an eventcount advances, regardless of the asynchronous
fault handling setting. An asynchronous fault, such as a "quit", is generated outside your
program. If an asynchronous fault occurs during an EC2__ $WAIT call, your program’s
response depends on the type of error handling that is in effect.

EC2-7 EC2



EC2_ $WAIT

If asynchronous faults are enabled, a program can respond to an asynchronous fault with a
clean-up handler or fault handler. If an asynchronous fault occurs during an EC2__ $WAIT
call, and asynchronous faults are enabled, the program will perform one of the following:

o Execute the clean-up handler, if the program has one.

o Execute the fault handler, if the program has one. If the fault handler returns
control to the interrupted code, EC2__$WAIT continues waiting.

o If the program has neither a clean-up handler nor a fault handler, the program
aborts if an asynchronous fault occurs.

If a program disables asynchronous faults and such a fault occurs during an EC2_ $WAIT,
then the program ignores the fault and continues waiting.

Note that the call EC2__$WAIT _SVC responds differently to asynchronous faults.

EC2 EC2-8

()

p




O

EC2_ $WAIT_SVC

EC2_$WAIT_SVC

Waits until any of a list of eventcounts reaches or exceeds a trigger value.

FORMAT

ec-satisfied = EC2 $WAIT SVC (ec-plist, ec-vlist, ec—count, status)

RETURN VALUE

ec-satisfied

An ordinal number indicating the eventcount that was satisfied. This is a positive, 2-byte
integer.

INPUT PARAMETERS

ec-plist
Array of pointers to eventcounts. Each pointer in the array is a 4-byte integer in
EC2_$PTR__T format. The total number of eventcounts in ec-plist lists in any one node
cannot exceed 32.

ec-vlist
Array of trigger values for each of the eventcounts in the ec-plist. Each trigger value is a

positive, 4-byte integer. When any of the eventcounts from the ec-plist reaches its trigger
value, the EC2__$WAIT _SVC call returns.

ec-count
Number of eventcounts in the ec-plist. This is a 2-byte integer.

OUTPUT PARAMETERS

status

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the EC2
Data Types section for more information.

USAGE

EC2_$WAIT _SVC waits until one of the eventcounts in the ec-plist reaches its trigger
value in the ec-vlist. When an eventcount reaches its trigger value, EC2__$WAIT _SVC
returns an index value indicating the position (in the ec-plist) of the eventcount that is
satisfied. The index starts from 1; that is, ec-satisfied equals 1 if the first eventcount in the
ec-plist is satisfied.

Several eventcounts may have been satisfied by the time this call wakes your program. The
index number returned refers to only one of the eventcounts. If more than one eventcount
is satisfied, EC2 _ $WAIT _ SVC returns the one with the smallest subscript.

In certain cases, EC2__$WAIT _SVC returns the error EC2_ $WAIT _ QUIT if an
asynchronous fault occurs during the EC2__ $WAIT _SVC call. An asynchronous fault,
such as a "quit", is generated outside your program. If an asynchronous fault occurs
during an EC2_$WAIT _ SVC call, your program’s response depends on the type of error
handling that is in effect.

EC2-9 EC2



EC2_$WAIT_SVC

EC2

If asynchronous faults are enabled, a program can respond to an asynchronous fault with a
clean-up handler or a fault handler. If an asynchronous fault occurs during an
EC2__$WAIT _SVC call, and asynchronous faults are enabled, the program will perform
one of the following:

e Execute the clean-up handler, if the program has one.
e Execute the fault handler, if the program has one. If the fault handler returns

control to the interrupted code, EC2__ $WAIT _ SVC returns the error
EC2__$WAIT _ QUIT.

e If the program has neither a clean-up handler nor a fault handler, the program
aborts if an asynchronous fault occurs.

If a program disables asynchronous faults and such a fault occurs during an
EC2_$WAIT _SVC, then the program does not handle the fault. However,
EC2__$WAIT _ SVC returns the error EC2__ $WAIT _ QUIT.

Note that the call EC2__$WAIT responds differently to asynchronous faults.

EC2-10

—.

/ N
N



ERRORS

STATUS _$OK
Successful completion.

EC2__$BAD_EVENTCOUNT
Bad eventcount.

EC2_ $INTERNAL _ ERROR

Internal error.

EC2__$NO_WAIT _ENTRIES
Internal table exhausted.

EC2__$WAIT_ QUIT

Process quit while waiting.

EC2-11

EC2 ERRORS

EC2



-










ERROR

The ERROR programming calls provide status printing and interpretation. This section
describes their data types and call syntax. The ERROR calls do not produce unique error
messages. Refer to the Introduction at the beginning of this manual for a description of data
type diagrams and call syntax format.

ERROR~1 ERROR



ERROR DATA TYPES

DATA TYPES

ERROR _ $INTEGER32

ERROR_ $STRING _PTR_T

ERROR_ $STRING T

A 2-byte integer. Possible values are integers from
-1 through 2147483647.

A 4-byte integer. A pointer to an
ERROR _ $STRING __ T data type.

An array of up to 80 characters.

STATUS_ $T A status code. The diagram below illustrates the
STATUS _$T data type:
byte: field name
offset
31 0
0: integer all
or
31
0: fail
24
| subsys
16
1: modc
, 0
2: integer code
Field Description:
all
All 32 bits in the status code.
fail
The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).
subsys
The subsystem that encountered the error (bits
24 - 30).
modc
The module that encountered the error (bits 16 -
23).
code
A signed number that identifies the type of error
that occurred (bits 0 - 15).
ERROR ERROR=-2

O




ERROR _ $CODE

ERROR _$CODE

Returns the module-specific code from a status code.

FORMAT

code = ERROR_$CODE (status)

RETURN VALUE

code _
The module-specific code component of the supplied status code. This is a 2-byte integer.

INPUT PARAMETERS

status
A status code returned from DOMAIN software, in STATUS _$T format. This data type
is 4 bytes long. See the ERROR Data Types section for more information.

USAGE

ERROR _ $CODE extracts and returns the module-specific code from the supplied status
code. The module-specific code is the rightmost 16 bits of a STATUS _ $T data type.

This routine is intended for use by FORTRAN programs that need to check for specific
status codes. Pascal programs can refer to this component directly.

ERROR-3 ERROR



ERROR _ $FAIL

ERROR_ $FAIL

Returns the state of the fail bit of a status code.

FORMAT
fail = ERROR_$FAIL (status)

RETURN VALUE

fail
The value of the fail bit of the status code. This is a Boolean (logical) value.

INPUT PARAMETERS

status

is 4 bytes long. See the ERROR Data Types section for more information.

USAGE

ERROR _ $FAIL extracts and returns the value of the fail bit of the supplied status code.
The fail bit is bit number 31 in the STATUS _$T data type.

This routine is intended for use by FORTRAN programs that need to check for specific
status codes. Pascal programs can refer to this component directly.

ERROR ERROR=-4

A status code returned from DOMAIN software, in STATUS _$T format. This data type




ERROR_ $FIND _ TEXT

ERROR __$FIND _ TEXT

Finds the text associated with a status code and returns pointers.

FORMAT

ERROR_$FIND_TEXT (status, subsys_p, subsys_l, module_p, module_l1,
code_p, code_l)

INPUT PARAMETERS

status
A status code returned from DOMAIN software, in STATUS _ $T format. This data type
is 4 bytes long. See the ERROR Data Types section for more information.

OUTPUT PARAMETERS

subsys_ p
The returned pointer to the subsystem name, in ERROR _ $STRING _PTR _ T format.
This is a 4-byte integer.

subsys__1
The number of characters in the string pointed to by subsys__p. This is a 2-byte integer.

module_ p
The returned pointer to the module name, in ERROR _ $STRING _PTR _ T format. This
is a 4-byte integer.

module__1
The number of characters in the string pointed to by module__p. This is a 2-byte integer.

code_p
The returned pointer to the diagnostic text, in ERROR_ $STRING_PTR _ T format.
This is a 4-byte integer.

code 1
The number of characters in the string pointed to by code__p. This is a 2-byte integer.

USAGE

ERROR _ $FIND _ TEXT looks up and returns pointers to the text associated with a status
code.

Text is associated with three components of the STATUS _$T type: subsystem name
("subsys"), module name ("module"), and error text ("code"). If
ERROR _ $FIND _ TEXT cannot find the text associated with a component in the status
code, a string length of zero is returned for the component. In this case, the pointer for
that component is not useable.

If the subsystem text length is zero, the status is invalid. If the module text length is zero,
both the module and code fields are invalid.

FORTRAN programs should use ERROR_ $GET _ TEXT instead of this routine.

ERROR-5 ERROR




ERROR_$GET _ TEXT

ERROR _ $GET _ TEXT

Finds the text associated with a status code and returns strings.

FORMAT

ERROR_$GET_TEXT (status, subsys_t, subsys_l, module_t, module 1,
code_t, code_1)

INPUT PARAMETERS

status

A status code returned from DOMAIN software, in STATUS _$T format. This data type
is 4 bytes long. See the ERROR Data Types section for more information.

OUTPUT PARAMETERS

subsys_t
The text string containing the subsystem name, in ERROR _$STRING _ T format. This is
an array of up to 80 characters.

subsys__1
The number of characters in the subsystem name. This is a 2-byte integer.

module _t

The text string containing the module name, in ERROR _ $STRING _ T format. This is an
array of up to 80 characters.

module 1
The number of characters in the module name. This is a 2-byte integer.

code_t
The text string containing the diagnostic text, in ERROR _$STRING _ T format. This is
an array of up to 80 characters.

code 1
The number of characters in the diagnostic text. This is a 2-byte integer.

USAGE
ERROR _ $GET _ TEXT looks up and returns the text associated with a status code.

Text is associated with three components of the STATUS _ $T type: subsystem name
("subsys"), module name ("module"), and error text ("code"). If ERROR_$GET _ TEXT
cannot find the text associated with a component in the status code, a string length of zero
is returned for the component.

If the subsystem text length is zero, the status is invalid. If the module text length is zero,
both the module and code fields are invalid.

The returned strings are not blank-filled. They contain only the number of characters
necessary to represent the names and diagnostic text.

ERROR ERROR=6

/ﬂ




O

O

O

ERROR __$INIT_ STD_ FORMAT

ERROR __$INIT_ STD _FORMAT
Establishes the values to be used in subsequent calls to ERROR _ $STD _ FORMAT.

FORMAT
ERROR_$INIT STD FORMAT (stream-id, prefix—char, command, length)

INPUT PARAMETERS

stream _id
The stream on which to write the error output, in STREAM _$ID _ T format. Thisis a
2-byte integer. This is usually STREAM _$ERROUT (Stream ID = 3).

prefix-char
The prefix element of the error format. This is one character. For system messages, this
value is usually a question mark (?).

command
The command name, in ERROR _ $STRING _ T format. This is an array of up to 80
characters.

length
The length of the command name, in bytes. This value can be zero.

USAGE

This call establishes constant values for the standard error reporting format. Subsequent
calls to ERROR _ $STD _ FORMAT cause error messages to use the values supplied in this
call.

Multiple calls may be made to ERROR_ $INIT _STD_FORMAT, but the information is
kept on a per-process-level basis. Thus, successive calls to

ERROR _$INIT _STD _FORMAT on the same process level replace previous error format
definitions.

Calling ERROR _ $INIT _STD_ FORMAT and ERROR _3$STD _ FORMAT is equivalent
to calling ERROR _$PRINT _FORMAT. For programs that use common subroutines, the
former method provides more flexibility. For example, if an application’s command level
sets the command name with ERROR _ $INIT _ STD _ FORMAT, it automatically provides
the common lower-level modules with the correct command name for their error messages.
Also, because ERROR _ $STD _ FORMAT has fewer parameters, it is easier to code using
the pair of calls instead of using ERROR _ $PRINT_ FORMAT.

ERROR=-7 ERROR




ERROR _$MODULE

ERROR _ $MODULE

Returns the module component from a status code.

FORMAT
module = ERROR_$MODULE (status)
RETURN VALUE

module
The module component of the supplied status code. This is a 2-byte integer.

INPUT PARAMETERS

status .
A status code returned from DOMAIN software, in STATUS _ $T format. This data type
is 4 bytes long. See the ERROR Data Types section for more information.

USAGE

ERROR _ $MODULE extracts and returns the module component of the supplied status
code. The module is found in bits 23 through 16 of the STATUS _ $T data type.

This routine is intended for use by FORTRAN programs that need to check for specific
status codes. Pascal programs can refer to this component directly. -

ERROR ERROR-8

7N



ERROR_ $PRINT

ERROR _ $PRINT

Prints error text associated with a status code.

FORMAT
ERROR_$PRINT (status)

INPUT PARAMETERS

status
A status code returned from DOMAIN software, in STATUS _ $T format. This data type
is 4 bytes long. See the ERROR Data Types section for more information.

USAGE

ERROR _ $PRINT looks up the text associated with the status code and writes it to the
error output stream.

If text is associated with all fields in the status code (subsystem, module, and code), a line is
output containing the subsystem and module names.

If the text for any of the three fields is not found, the status code is displayed in
hexadecimal, along with the subsystem and module names, if known.

The STCODE command, which can be used to view error messages, uses ERROR__$PRINT
to output the error text.

ERROR=-9 ERROR



ERROR _ $PRINT_ FORMAT

ERROR _$PRINT _FORMAT

Prints a status code in the given error format.

FORMAT

ERROR_$PRINT_FORMAT (status, stream-id, prefix-char, command, length,
control-string, al, a2, ... al0)

INPUT PARAMETERS

status
The status code to be displayed in standard error format, in STATUS _$T format. This
data type is 4 bytes long. See the ERROR Data Types section for more information.

If the status code is zero, the dash and following error text are omitted from the message.

stream-id
The stream on which to write the error output, in STREAM _$ID __ T format. Thisis a
2-byte integer. This value is usually STREAM _ $ERROUT (Stream ID + 3).

prefix-char
The prefix element of the error format. This is one character. For system error messages,
this value is usually a question mark (?).

command

The command name, in ERROR _ $STRING _ T format. This is an array of up to 80
characters.

length
Length of the command name, in bytes. This is a 2-byte integer. If length is zero, the
command name portion of the standard error format is omitted.

control-string
A character string that contains text and control information for encoding the arguments
that follow. It is a VEFMT control string that must at least contain the two special
characters (%, $). For detailed information on VFMT control strings, see the chapter on
"Formatting Variables with VFMT in Programming With General System Calls.

al, a2, ... al0
One-to-ten substitution arguments that contain data for encoding using the control-string
parameter.

If you are encoding ASCII text strings, you must provide two variables for each text string:

a character string containing the string, and a 2-byte integer variable containing the length
of the string.

ERROR ERROR=-10




O

USAGE

ERROR _$PRINT_FORMAT

ERROR _ $PRINT_FORMAT prints an error in the standard error format.

ERROR _ $PRINT _ FORMAT takes a variable number of arguments in the al...a10
parameters. However, all arguments up to and including the control string must be given.

This routine uses the same control string format as the variable formatting routine

VFMT _$WRITE.

ERROR=11

ERROR



ERROR; $PRINT _NAME

ERROR _ $PRINT_ NAME N

Prints error text associated with a status code, along with a user-supplied name. =

FORMAT
ERROR_$PRINT_NAME (status, name, namelength)

INPUT PARAMETERS
status

A status code returned from DOMAIN software, in STATUS _$T format. This data type
is 4 bytes long. See the ERROR Data Types section for more information.

name
The name to be printed. This is an array of up to 80 characters.
namelength ﬁ
The length of the name to be printed, in bytes. This is a 2-byte integer. N
USAGE

ERROR _ $PRINT _ NAME looks up the text associated with the status code and writes it
to the error output stream, along with the supplied name.

If text is associated with all fields in the status code (subsystem, module, and code), output 7
appears with the supplied name first, followed by a descriptive error message corresponding
to the status code, followed the subsystem and module names in parentheses.

If the text for any of the three fields is not found, the status code is displayed in

hexadecimal, along with the subsystem and module names, if known. The supplied name is
also displayed, in the form shown above.

ERROR ERROR~-12




@

4

ERROR_$STD_FORMAT

ERROR _ $STD _ FORMAT

Prints the status code in the standard error format using the values specified in the last call
to ERROR_$INIT _STD _FORMAT.

FORMAT
ERROR_$STD_FORMAT (status, control-string, al, a2, ... al0)

INPUT PARAMETERS

status
The status to be printed in standard error format, in STATUS _ $T format. This data type
is 4 bytes long. See the ERROR Data Types section for more information.

control-string
A character string that contains text and control information for encoding the arguments
that follow. It is a VEMT control string that must at least contain the two special
characters (%, $). For more information on VFMT control strings, see Chapter 3 of
Programming With General System Calls.

al, a2, ... al0
One-to-ten substitution arguments that contain data for encoding using the control-string
parameter.

If you are encoding ASCII text strings, you must provide two variables for each text string:
a character string containing the string, and a 2-byte integer variable containing the length
of the string.

USAGE

Programs using ERROR__$STD _ FORMAT must first call
ERROR _$INIT_ STD_ FORMAT to establish constant values for the standard error
reporting format.

This routine uses the same control string format as the variable formatting routine
VFMT _ $WRITE. -

ERROR-13 ERROR



ERROR _ $SUBSYS

ERROR _ $5UBSYS

Returns the subsystem component from a status code.

FORMAT
subsys = ERROR_$SUBSYS (status)

RETURN VALUE
subsys

The subsystem component of the supplied status code. This is a two-byte integer.
INPUT PARAMETERS

status
A status code returned from DOMAIN software, in STATUS _$T format. This data type
is 4 bytes long. See the ERROR Data Types section for more information.

USAGE

ERROR _ $SUBSYS extracts and returns the subsystem component of the supplied status
code. The subsystem is found in bits 30 through 24 of the STATUS _$T data type.

This routine is intended for use by FORTRAN programs that need to check for specific
status codes. Pascal programs can refer to this component directly.

ERROR ERROR~-14

N
W,

7










O

FPP

The FPP (Floating Point Package) programming calls perform various operations on floating
point state. This section describes their data types, call syntax, and error codes. Refer to the
Introduction at the beginning of this manual for a description of data-type diagrams and call
syntax format.

FPP=-1 : FPP



FPP DATA TYPES

DATA TYPES

FPP_OP_T

FPP_$SAVE_AREA_PTR

FPP_$SAVE_AREA_T

A 2-byte integer. Options available with
FPP_$CONTOL and FPP _ $STATUS. One of
the following predefined values:

READ _OP
Reads the FP register into the specified
variable.

WRITE _OP
Writes to the FP register from the specified
variable.

EXCH_ OP
Exchanges the FP register with the specified
register.

A 4-byte integer. A pointer to the storage area
where the floating point state is saved.

An array of up to 104 bytes. The storage area for
saving a the floating point state.

STATUS__$T A status code. The diagram below illustrates the
STATUS _$T data type:
byte: field name
offset
31 0
0: integer all
or
31
0: fail
24
subsys

16

1: modc

. 0
2: integer code
Field Description:
all
All 32 bits in the status code.
fail
The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).
FPP FPP-2

O

N



FPP DATA TYPES

subsys
C ) The subsystem that encountered the error (bits
S/ 24 - 30).

modc

The module that encountered the error (bits 16 -
23).

code

A signed number that identifies the type of error
that occurred (bits 0 - 15).

FPP=-3 FPP



FPP_$CONTROL

FPP__$CONTROL

Reads from or writes to the floating point control register.

FORMAT

FPP_$CONTROL (options, control-reg, status)
INPUT PARAMETERS
options

Specifies the type of action to be taken, in FPP_OP _ T format. Specify one of the
following predefined values: ‘

READ _OP Read the FP control register into the variable specified for control-reg.
WRITE _ OP Write the FP control register from the variable specified for control-reg.

EXCH__OP Exchange the FP control register with the variable specified for
control-reg.

OUTPUT PARAMETERS

control-reg
A bit mask of 32 bits, of which only the low 16 bits are currently used. They are
interpreted as follows:

FPP FPP=-4

N



FPP _ $CONTROL

31 16
<::> > T

not used (set to zero)

16 14 13 12 11 10 9 8 7 65 43 0

PREC | RND

E Rounding Mode

00: To nearest

01: Toward zero

10: Toward minus infinity
11: Toward plus infinity

V Rounding Percision
00: Extended
01: Single
10: Double
11: Reserved

s

IIMUTO
rnzc
o OXMZ —
“XmZ—

: V Inexact Decimal Input
: 7 Inexact Operation
|V Divide by zero
Underflow
i Overflow
: Operand Error
Signalling not a Number

' Branch/Set on Unordered Condition
@

status

Completion status in STATUS _$T format. This data type is 4 bytes long. See the FPP
Data Types section for more information.

USAGE

FPP _$CONTROL is used to read from or write to the floating point control register to
enable/disable various floating point exceptions. This routine is for use only with machines

equipped with the MC68881 or FPX units. Use of this routine on other machines will result
in a FPP_ $UNSUPPORTED _ FUNCTION error.

FPP=5 FPP



FPP_ $RESTORE

FPP_ $RESTORE

Restores the floating point state.

FORMAT

bytes-restored := FPP_$RESTORE(save-area-ptr, status)

RETURN VALUE

bytes-restored

Number of bytes restored from save area.

INPUT PARAMETERS

save-area-ptr

A pointer to the storage area from which the floating point state is restored. This is a

4-byte integer.

OUTPUT PARAMETERS

status

Completion status in STATUS _$T format. This data type is 4 bytes long. See the FPP

Data Types section for more information.

USAGE

This function returns the number of bytes restored from the specified area.

FPP

FPP=-6

N
N’



FPP _$SAVE

FPP_ $SAVE

Saves the floating point state.

FORMAT

bytes-saved := FPP_$SAVE(save-area-ptr, status)

RETURN VALUE

bytes-saved
Number of bytes saved in save area.

INPUT PARAMETERS

save-area-ptr
A pointer to the storage area where the floating point state will be saved. This is a 4-byte
integer.

OUTPUT PARAMETERS

status
Completion status in STATUS _$T format. This data type is 4 bytes long. See the FPP
Data Types section for more information.

USAGE

This function returns to the caller the number of bytes saved in the specified area.
FPP__$SAVE is useful in fault handlers that implement multitasking environments within
a single process.

FPP=7 FPP



FPP_$SAVE_RESTORE

FPP_$SAVE _RESTORE

Saves current floating point state, then restores the specified floating point state.

FORMAT

bytes-moved := FPP_$SAVE RESTORE(save-area-ptrl, save-area-ptr2, status)

RETURN VALUE

bytes-moved
Number of bytes saved in or restored from save area.

INPUT PARAMETERS

save-area-ptrl
A pointer to the storage area where the current floating point state will be saved. This is a
4-byte integer.

INPUT PARAMETERS

save-area-ptr2
A pointer to the storage area from which the specified floating point state is to be restored.
This is a 4-byte integer.

OUTPUT PARAMETERS

status

Completion status in STATUS _ $T format. This data type is 4 bytes long. See the FPP
Data Types section for more information.

USAGE

This function returns the number of bytes saved to or restored from the specified area.

FPP FPP-8




FPP_$SAVE_RESTORE_SIZE

FPP_$SAVE_RESTORE_ SIZE

Returns the number of bytes required for one state save.

FORMAT
save-area—size .= FPP_$SAVE_RESTORE_S IZE

RETURN VALUE

save-area-size
Number of bytes required for saving one floating point.

USAGE

This function enables the user to determine how many bytes of storage are needed to save
the floating point state on the particular machine currently executing the function. (The
number of bytes varies according to the the FP machine type.) It is only necessary to
specify the returned size amount of space for each state save.

FPP=9 FPP



FPP_ $STATUS

FPP_ $STATUS

Reads from or writes to the floating point status register.

FORMAT

FPP_$STATUS (optiomns, status-reg, status)
INPUT PARAMETERS
options

Specifies the type of action to be taken, in FPP__OP _ T format. Specify one of the
following predefined values: ‘

READ _OP Read the FP status register into the variable specified for status-reg.

WRITE _ OP Write the FP status register from the variable specified for status-reg.

EXCH__OP Exchange the FP status register with the variable specified for status-reg.

OUTPUT PARAMETERS

status-reg

A bit mask of 32 bits, of which only the low 16 bits are currently used. They are
interpreted as follows:

Condition Code Byte Quotient Byte

31 30 29 28 27 26 25 24 23 22 16

SRR

PR R RO RO R0 A%

RPN ARG SRS

Quotient

TRRRRREORRINRONSE

g Seven Least

Significant Bits of Quotient
Sign of Quotient

: Not a Number or Unordered

J Infinity

' Zeoro

V Negative

¥ Reserved

FPP FPP=10

()




FPP_ $STATUS

Exception Status Byte Accrued Exception Byte

i6 14 13 12 11 10 9 8 7 6 5 4 3 2 0

D] I
Z|N
E o

X
Inexact

|V Divide by Zero
V Underflow
Overflow
: Invalid Operation
7/ Inexact Decimal input
Inexact Operation

2 oVMVO
3 rm<O
rnzc

z XmZ—
e ~xmz—
PPN I- 1‘ < 0
rmzc

i

V Divide by Zero
07 Underflow
H Y Overflow
§ Y Operand Error
iV Signalling not a Number
V' Branch/Set on Unordered Condition

status
Completion status in STATUS _ $T format. This data type is 4 bytes long. See the FPP
Data Types section for more information.

USAGE

FPP _ $STATUS is used to read from or write to the floating point status register to
enable/disable various floating point exceptions. This routine is for use only with machines
equipped with the MC68881 or FPX units. Use of this routine on other machines will result
in a FPP_ $UNSUPPORTED _ FUNCTION error.

FPP=-11 FPP




FPP ERRORS

ERRORS

FPP_$INVALID _ OP
Invalid operation attempted.

FPP_$UNSUPPORTED _ FUNCTION

Operation not supported on current hardware.

STATUS _$0OK
Successful completion.

FPP FPP=-12










O

O

GMF

This section describes the data types, the call syntax, and the error codes for the GMF
programming calls. Refer to the Introduction at the beginning of this manual for a description of

data type diagrams and call syntax format.

GMF=-1

GMF



GMF DATA TYPES

DATA TYPES

GMF_$0POS_T

GMF_ $MEMORY _ T
GMF _$MEMORY _PTR_ T

STREAM_$ID_T

STATUS _$T

' byte:
offset

GMF

A 2-byte integer. Specifies the file opening
positions. One of the following predefined values:

GMF _ $OVERWRITE

Provides write access; truncates file to BOF if

it already exists.

GMF__$APPEND
Provides write access if file exists.

GMF__$READ
Provides read access only.

A 65535-element array of 131070-byte integers. An
array of two-byte integers.

A 4-byte integer. A pointer to an array of type
gmf__$memory _t.

A 2-byte integer. Open stream identifier.

A status code. The diagram below illustrates the
STATUS _8$T data type:

field name
31 0
integer all
or
31
-' fail
24
subsys
16
modc
. 0
integer code

Field Description:

all
All 32 bits in the status code.

fail

The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

GMF=2

®

7
H J




GMF DATA TYPES

subsys
The subsystem that encountered the error (bits
24 - 30).

modc
The module that encountered the error (bits 16 -
23).

code

A signed number that identifies the type of error
that occurred (bits 0 - 15).

GMF=-3 GMF



GMF _ $CLOSE

GMF _ $CLOSE
Closes a GMF'.

FORMAT
GMF_$CLOSE (stream_id, status)

INPUT PARAMETERS

stream __id
The stream ID of the GMF to be closed, in STREAM _$ID _ T format. This is a 2-byte
integer. You obtain the stream ID from the call to GMF _ $OPEN that you used to open
the GMF'.

OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE
To open a GMF, use GMF _ $OPEN.

GMF GMF=4




GMF_$COPY_ PLANE

GMF _$COPY _ PLANE

Dumps a rectangular area of bits from virtual memory into a GMF,

FORMAT

GMF_$COPY_PLANE (stream_id, black or_ white, bpi, bit_pointer, x dim, y_dim,
width, status)

INPUT PARAMETERS

stream __id
The stream ID of the GMF into which the image is to be stored, in STREAM _$ID _ T
format. This is a 2-byte integer. You obtain the stream ID from the call to GMF _ $OPEN
that you used to open the GMF'.

black _or_ white
A Boolean variable. A value of TRUE means "1" bits are black and "0" bits are white. A
value of FALSE means "1" bits are white and "0" bits are black. In the GMF, "1" bits
are assumed to mean black. Thus if this parameter is false, the bits will be inverted as they
are copied.

bpi
The number of bits per inch in the GMF. This information is stored in the GMF. It
indicates the physical density of the image represented in the GMF. If this parameter is
nonzero, a device to which you output the GMF may compress or expand the image to
produce a result which is as close as possible to the image’s original size. If this parameter
is zero, an output device uses one dot to represent each bit from the GMF, regardless of the
resulting physical size of the image. This is a 2-byte integer.

bit__pointer
A pointer to the upper left corner of the rectangular area to be stored, in
GMF _$MEMORY _PTR _ T format. This is a 4-byte integer. You obtain this value by
calling the routine GPR__$INQ _BITMAP _POINTER.

x__dim
The x dimension of the rectangular area to be stored in the GMF. This is a 2-byte integer.

y__ dim
The y dimension of the rectangular area to be stored in the GMF. This is a 2-byte integer.

width
The number of 16-bit words per scan line in the source bitmap. The value of this
parameter is usually 64. The width must be at least 1/16 of the specified x-dim. For
instance, if you are storing an area 400 bits wide in a GMF', the source bitmap must use at

least 25 words to represent each scan line (row of dots). This is a 2-byte integer. You
obtain this value by calling GPR_$INQ_ BITMAP _ POINTER.

GMF=56 GMF



GMF_$COPY_PLANE

OUTPUT PARAMETERS
status

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE
To store an image in a GMF, you must have opened the GMF with the GMF _ $OPEN call.

After storing an image in a GMF, close the GMF' with the GMF _ $CLOSE call.

The GMF _$COPY _ PLANE call is a special case of the GMF _ $COPY _ SUBPLANE
call.

GMF GMF=6




GMF __$COPY_ SUBPLANE

GMF' _ $COPY __ SUBPLANE

Dumps a rectangular area of bits from virtual memory into a GMF'.

FORMAT

GMF_$COPY_SUBPLANE (stream_id, black_or_white, bpi, bit_pointer, x_dim, y_dim,
x offset, y offset, width, status)

INPUT PARAMETERS

stream _id
The stream ID of the GMF into which the image is to be stored, in STREAM _$ID_ T

format. This is a 2-byte integer. You obtain the stream ID from the call to GMF _ $OPEN
that you used to open the GMF'.

black _or__white
A Boolean variable. A value of TRUE means "1" bits are black and "0" bits are white. A
value of FALSE means "1" bits are white and "0" bits are black. In the GMF, "1" bits
are assumed to mean black. Thus if this parameter is false, the bits will be inverted as they
are copied.

bpi
The number of bits per inch in the GMF. This information is stored in the GMF. It
indicates the physical density of the image represented in the GMF. If this parameter is
nonzero, a device to which you output the GMF may compress or expand the image to
produce a result which is as close as possible to the image’s original size. If this parameter
is zero, an output device uses one dot to represent each bit from the GMF, regardless of the
resulting physical size of the image. This is a 2-byte integer.

bit_pointer
A pointer to a bit which when offset by x__offset and y__offset gives the upper left corner
of the rectangular area to be stored. This is a 4-byte integer. You obtain this value by
calling the routine GPR__$INQ _ BITMAP_ POINTER.

x__dim
The x dimension of the rectangular area to be stored in the GMF. This is a 2-byte integer.

y__dim
The y dimension of the rectangular area to be stored in the GMF. This is a 2-byte integer.

x __offset
The x starting position of the rectangular area to be stored in the GMF' relative to the bit
whose address is given by bit__pointer. This is a 2-byte integer.

y __offset
The y starting position of the rectangular area to be stored in the GMF relative to the bit
whose address is given by bit__pointer. This is a 2-byte integer.

width
The number of 16-bit words per scan line in the source bitmap. The value of this
parameter is usually 64. The width must be at least 1/16 of the specified x-dim. For
instance, if you are storing an area 400 bits wide in a GMF,, the source bitmap must use at

least 25 words to represent each scan line (row of dots). This is a 2-byte integer. You
obtain this value by calling GPR_ $INQ _ BITMAP _ POINTER.

GMF=7 GMF



GMF_$COPY_ SUBPLANE

OUTPUT PARAMETERS
status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE
To copy a plane into a GMF, you must have opened the GMF with the GMF _ $OPEN call.

After copying a plane into a GMF, close the GMF with the GMF _ $CLOSE call.

The GMF _ $COPY __ SUBPLANE call is a more general form of the

GMF

GMF _$COPY__PLANE call.

GMF-8

/"\




C

GMF _$OPEN

GMF _$OPEN

Opens or creates a GMF.

FORMAT

GMF_$OPEN (name, name_length, start, stream id, status)

INPUT PARAMETERS

name
Pathname, in NAME _ $PNAME _ T format.

name__length
The length of the name. This is a 2-byte integer.

start
Desired position in the file after open, in GMF _$OPOS _ T format. This is a 2-byte
integer. If you are opening the GMF to write data to it (to copy a plane or subplane into
it), use one of these two constants:

GMF_$APPEND sets the initial position to EOF.
GMF_$0VERWRITE truncates the object to length O and sets the initial
position to the beginning.

If you are opening the GMF to read data from it (restoring a plane), use this constant:

GMF_$READ sets the initial position to the beginning without
truncating the GMF

If the specified GMF does not exist and you used GMF _ $OPEN to create it, it does not
matter what value this parameter has.

OUTPUT PARAMETERS

stream _id
The stream ID of the opened GMF, in STREAM _$ID _ T format. This is a 2-byte integer.
You use this value in subsequent GMF calls that refer to the opened GMF'.

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

GMF=-9 GMF



GMF _$OPEN

USAGE
If the specified GMF does not exist, the call to GMF _ $OPEN creates it.

You must call GMF _ $OPEN before trying to read or write a GMF.

After opening a GMF with GMF _ $OPEN, you must eventually close it by calling
GMF _ $CLOSE.

GMF GMF-10




O

O

O

GMF _ $RESTORE _ PLANE

GMF _$RESTORE _ PLANE

Copies an image back to the screen from a GMF.

FORMAT

GMF_$RESTORE_PLANE (stream id, x_dim, y_dim, width, start, bpi, status)

INPUT PARAMETERS

stream _id
The stream ID of the GMF which is to supply the image, in STREAM _$ID _ T format.
This is a 2-byte integer. You obtain this parameter from the call to GMF _ $OPEN you
used to open the GMF.

x__dim
The x-dimension in bits of the display to which an image is to be restored. This is a 2-byte
integer. »

y__dim
The y-dimension in bits of the display to which an image is to be restored. This is a 2-byte
integer.

" width

The number of 16-bit words per scanline in the destination bitmap. This is a 2-byte
integer.

start
The starting address in the destination bitmap. In Pascal this is a UNIV _PTR. See the

GPR Data Types section for more information.

OUTPUT PARAMETERS
bpi v
Bits per inch as specified in GMF_$COPY_ PLANE. This is a 2-byte integer.

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

GMF=11 GMF



GMF_$RESTORE_ PLANE

USAGE

Before calling GMF _ $RESTORE _ PLANE, you must use GPR__$INIT to place the node
in borrow-display mode.

The size of the area to be restored is the same as the size of the area you originally copied
into the GMF. This information is contained in the GMF'.

The area to be restored is determined by the bit-pointer specified in the

GMF _$RESTORE__PLANE call and the size data in the GMF. If this area runs off the
right side or the bottom of the screen, the GMF manager restores only the portion of the
stored image that fits on the screen.

To restore a plane from a GMF, you must have opened the GMF with the GMF_ $OPEN
call.

After restoring a plane from a GMF', you should close the GMF with the GMF _ $CLOSE
call.

GMF GMF=12

®

®




ERRORS

GMF _$BAD _BPI

Bits/inch parameter is negative.

GMF _$BAD _POS

Opening position parameter is illegal.

GMF _$BAD_ WPL

16 bit words/line parameter is too small for x dim.

GMF _$BAD _X_DIM

X-dimension parameter is not positive.

GMF_$BAD _Y_DIM

Y-dimension parameter is not positive.

GMF _ $NOT _ GMF
Opened file not a GMF metafile.

STATUS _$0OK
Successful completion.

GMF=-13

GMF ERRORS

GMF



Ve










()

O

I0S

The IOS (I/O Switch) programming calls perform device-independent I/O. This section describes
their data types, call syntax, and error codes. Refer to the Introduction at the beginning of this
manual for a description of data-type diagrams and call syntax format.

I105-1 108



I0S DATA TYPES

CONSTANTS

I0S_ $MAX
I0S_$NO__STREAM
VARIABLES

XOID _$NIL

DATA TYPES

I0S_$ABS_REL_T

I0S_$CONN_FLAG_T

105

127

16#7FFF

Highest possibe number in stream ID.

Placeholder for stream ID.

A variable whose value is the NIL XOID and
doesn’t change. Used for comparisons and
assignments of XOID _ $T variables.

A 2-byte integer. Specifies whether seek is relative (\
or absolute. One of the following predefined values: ~—

10S _ $RELATIVE
Seek from the current position.

IOS_$ABSOLUTE
Seek from the beginning of the object (BOF).

A 2-byte integer. Attributes associated with a N
stream connection. One of the following predefined \
values:

I0S_$CF_TTY
Connection behaves like a terminal.

10S_$CF_IPC
Connection behaves like an interprocess
communication (IPC) channel. s

I0S_$CF_VT
Connection behaves like a DOMAIN Display
Manager pad.

10S_$CF_ WRITE
Connection can be written to.

10S__$CF_ APPEND
Connection’s stream marker can be positioned
to the end of the object before each put call.

I0S__$CF_UNREGULATED
Other processes can read and write to the
connection.

I0S_$CF_READ INTEND _WRITE e
Connection open for read access, and can later y

108-2




10S_$CONN_FLAG_ SET

10S_$CREATE_MODE_T

I0S_$DIR_TYPE T

I0S_$EC_KEY_ T

10S DATA TYPES

be open for write access. Other processes can
have read access.

A 4-byte integer. A set of connection attributes, in
IOS_$CONN _ FLAG _ T format, indicating which
attributes of the specified connection are set. For a
list of options, see IOS__$CONN__FLAG_ T
above.

A 2-byte integer. Specifies the action to be taken if
the name already exists or specifies creation of
umnamed objects. One of the following predefined
values:

I0S_$LOC_NAME_ONLY_MODE

Create a temporary unnamed object, uses
pathname to specify location of object, and
locates it on the same volume.

10S_$MAKE_BACKUP _MODE
Create a backup (.bak) object when closed.

10S_$NO_PRE_EXIST _MODE
Return an error if object already exists.

10S_$PRESERVE _MODE
Save contents of object, if it exists, opens

object, and positions stream marker at the
~ beginning of the object (BOF).

10S_$RECREATE_MODE
Delete existing object and creates new one of
same name.

10S_ $TRUNCATE _MODE
Open object, then truncates the contents.

A 2-byte integer. Specifies type of directory. One
of the following predefined values: '

10S_$WDIR
Current working directory.

10S_$NDIR
Current naming directory

A 2-byte integer. Specifies eventcount key type.
One of the following predefined values:

I0S__$GET_EC_KEY
Key that is advanced with each get call.

10S_$PUT_EC_KEY
Key that is advanced with each put call.

108-3 108



10S DATA TYPES

I0S_$ID_T

I0S_$MGR_FLAG_T

108

A 2-byte integer, ranging in value from 0 to
I0S _$MAX. The stream ID.

A 2-byte integer. Object attributes associated with

an object’s manager. One of the following
predefined values:

I0S_$MF_ CREATE
Manager permits type to create objects.

I0S_$MF_ CREATE_BAK
Manager permits type to create backup (.bak)
objects.

I0S_ $MF_ IMEX
Manager permits type to export streams to
new processes.

I0S_$MF_ FORK
Manager permits type to pass streams to
forked processes.

I0S_$MF_FORCE_WRITE

Manager permits type to force-write object
contents to stable storage (for most object
types, this is the disk).

10S_$MF_ WRITE
Manager permits objects to be written to.

10S_$MF_SEEK_ ABS
Manager permits objects to perform absolute
seeks.

I0S_$MF_ SEEK_SHORT
Manager permits objects to seek using short
(4-byte) seek keys.

10S__$MF _SEEK_FULL
Manager permits objects to seek using full
(8-byte) seek keys.

I0S_$MF_SEEK_ BYTE
Manager permits objects to seek to byte
positions.

10S_$MF_SEEK__REC
Manager permits objects to seek to record
positions.

I0S_$MF_SEEK_ BOF
Manager permits objects to seek to the
beginning of the object.

I0S_$MF_REC_ TYPE

10S-4

)



O

I0S_$MGR_FLAG _SET

I0S_$NAME_TYPE T

10S DATA TYPES

Manager supports different record type
formats.

10S_$MF_ TRUNCATE
Manager permits objects to be truncated.

10S_$MF_UNREGULATED
Manager permits objects to have shared
(unregulated) concurrency mode.

10S_$MF_ SPARSE
Manager permits objects to be as sparse.

I0S_$MF_READ _INTEND _WRITE
Manager permits objects to have
read-intend-write access.

A 4-byte integer. A set of object manager
attributes, in IOS_ $MGR _FLAG _ T format,
indicating which attributes of the specified object’s
manager are set. For a list of options, see

I0S_$MGR _FLAG _T above.

A 2-byte integer. Specifies format of pathname.
One of the following predefined values:

I0S_$ROOT_NAME
Absolute pathname relative to the network

root directory (//); for example,
//node/sid/file.

I0S_$WDIR_ NAME

Leaf name if object’s name is a name in
current working directory; otherwise, specifies
absolute pathname.

10S_$NDIR_ NAME

Leaf name if object’s name is a name in
current naming directory; otherwise, specifies
absolute pathname.

10S_$NODE_NAME

Name relative to the node’s entry directory
(/) if object is a name in boot volume;
otherwise, specifies absolute pathname; for
example, /sid/file.

10S_$NODE_DATA_FLAG

Leaf name if object’s name is a name in
current ‘node__data directory; otherwise,
specifies absolute pathname.

10S_$LEAF _NAME
Leaf name regardless of object’s name.

105-5 108



10S DATA TYPES

10S_$0BJ_FLAG_T

I0S__$0BJ_FLAG_SET

10S_$OPEN_ OPTIONS_ T

108

10S__$RESID _NAME
Residual name if object is defined using
extended naming.

A 2-byte integer. Attributes associated with an
object. One of the following predefined values:

I0S__$OF_DELETE__ ON_ CLOSE
Object can be deleted when all its associated
connections are closed.

10S_$OF _SPARSE_ OK
Object can be written as a sparse object.

10S_$OF_ASCII
Object contains ASCII data.

I0S_$OF _FTNCC
Object uses FORTRAN carriage control

characters.

I0S__$OF _ COND

Object performs get or put calls conditionally,
as if the IOS_$COND _ OPT was specified.

A 4-byte integer. A set of object attributes, in
IOS_$0OBJ_FLAG__ T format, indicating which
attributes of the specified object are set. For a list

of options, see IOS__ $OBJ_FLAG _T above.

A 2-byte integer. Specifies options for an
IOS _$OPEN. Any combination of the following
predefined values:

I0S_$NO_OPEN_DELAY OPT
Return immediately instead of waiting for
open to complete.

10S_$WRITE _OPT
Permit writing data to a new object.

10S_$UNREGULATED _OPT
Permit concurrency (unregulated read and
write access.) to the object

10S_$POSITION _TO_EOF_ OPT
Position stream marker to the end of the
object at open.

10S_$INQUIRE_ ONLY_OPT
Open object for attribute inquiries only.

I0S_$READ _INTEND _WRITE_ OPT
Object has read-intend-write access, other
processes can have read but not write access.

10S-6

C




O

I0S_$POS_OPT_T

I0S_$PUT_GET_OPTS_T

I0S_$RTYPE_T

I0S DATA TYPES

A 2-byte integer. Specify position to return when
inquiring about object position. One of the
following predefined values:

I0S_ $CURRENT
Return key for the current stream marker.

10S_$BOF
Return key for beginning of the object (BOF)
marker.

10S_$EOF
Return key for end of the object (EOF)

marker.

A 2-byte integer. Specifies options for put and get
operations. Any combination of the following
predefined values:

10S_$COND_ OPT

Read or write data conditionally. If call fails,
returns

I0S_$xxx_ CONDITIONAL _ FAILED,
where xxx is either GET or PUT.

10S_$PREVIEW_OPT
Write data but do not update the stream
marker. :

I0S__$PARTIAL _RECORD _OPT
Write a portion of a record but do not
terminate it.

I0S_$NO_REC_BNDRY_OPT
Ignore record (line) boundries.

A 2-byte integer. Specifies the record type format.
One of the following predefined values:

10S_$V1
Variable-length record with count fields.

10S_ $F2
Fixed-length records with count fields.

I0S_ $UNDEF
No record structure.

10S_ $EXPLICIT _F2
Fixed-length records that IOS__$PUT cannot
implicitly change to IOS_$V1.

10S_$F1
Fixed-length records without count fields.

105=7 108



I0S DATA TYPES

I0S_$SEEK_KEY_ T

I0S_$SEEK_TYPE T

STATUS _$T

108

byte:
offset

The full seek key. This is an 8-byte integer value.

A 2-byte integer. Specifies the type of seek to
perform. One of the following predefined values:

10S_ $REC_ SEEK
Record-oriented seek.

10S__$BYTE _ SEEK
Byte-oriented seek.

A status code. The diagram below illustrates the
STATUS _ 8T data type:

field name
31 0
integer all
or
31
fail
24
' subsys
16

modc

. 0

integer code

Field Description:

all
All 32 bits in the status code.

fail

The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

subsys
The subsystem that encountered the error (bits
24 - 30).

modc
The module that encountered the error (bits 16 -
23).

code
A signed number that identifies the type of error
that occurred (bits 0 - 15).

10S-8

()

/“\




UID_$T

XOID_ $T
predefined
type

uid_$t

byte:
offset

12:

I0S DATA TYPES

An object type identifier. This is an 8-byte integer
value.

Unique identifier of an object. Used by type
managers only. The diagram below illustrates the
XOID _$T data type:

a1 field name
integer rful
integer rfu2
integer uiD
integer

Field Description:

rful
Reserved for future use.

rfu2
Reserved for future use.

UID

Unique identifier for an object.

105-9 108



10S_$CHANGE_PATH_NAME

I0S_$CHANGE PATH NAME

Changes the pathname of an object.

FORMAT

I0S_$CHANGE_PATH_NAME (stream-id, new-pathname, new-namelength, status)

INPUT PARAMETERS

stream-id

Number of the stream on which the object is open, in IOS_$ID _ T format. Thisis a
2-byte integer.

new-pathname

New name of the object, in NAME_$PNAME _ T format. This is an array of up to 256
characters.

new-namelength

Length of "new-pathname." This is a 2-byte integer.

OUTPUT PARAMETERS

status

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

USAGE

108

I0S_$CHANGE _PATH__NAME changes the pathname of an existing object. The

stream ID of the object remains the same.

IOS_$CHANGE __PATH__NAME permits you to assign a name to a previously unnamed
object and, conversely, to remove a name from a previously named object. (To remove a
name, specify a null pathname.)

Note that this call can change the delete-on-close object attribute. For example, if you
assign a name to an unnamed object, the operation implicitly changes the delete-on-close
attribute to FALSE. Likewise, if you specify a null pathname for a previously named
object, the operation implicitly changes the delete-on-close attribute to TRUE. Be aware
that this behavior can cause unexpected results in cases where you explicitly change the
delete-on-close attribute, and then make an unnamed-to-named name change.

105-10

N

C



10S_$CLOSE

10S_ $CLOSE

Closes a stream.

FORMAT
I0S_$CLOSE (stream-id, status)

INPUT PARAMETERS

stream-id
Number of the stream to be closed, in IOS__$ID _ T format. This is a 2-byte integer.

Once IOS _ $CLOSE closes the stream, the number used for this stream ID becomes
available for reuse. If the object is open on more than one stream, IOS__$CLOSE closes
only “stream-id."

OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

USAGE

I0S_$CLOSE closes the stream so that you can no longer use the stream ID to operate on
the object. Closing a stream to an object releases any locks maintained by the stream
connection, thus making the object available to other users.

A program can close only the streams that it has opened at the current or lower program
levels (that is, streams opened by programs that the calling program has invoked).

IOS_ $CLOSE returns an error status code if you try to close a stream that was opened at
a higher program level.

If an object has the delete-on-close attribute (IOS__$OF _DELETE__ ON_ CLOSE),
I0S_$CLOSE deletes the object. However, the object is not deleted until all streams to it
are closed. (For details on object attributes, see the IOS__ $INQ__$OBJ_FLAGS and
I0S_$SET__OBJ_FLAG calls.)

108-11 10S



10S_$CREATE

I0S_$CREATE (\
Creates an object and opens a stream to it. .

FORMAT N

I0S_$CREATE (pathname, namelength, type-uid, create-options,
open-options, stream-id, status)

. INPUT PARAMETERS

pathname
Name of the object to be created, in NAME _$PNAME T format. This is an array of up
to 256 characters. To create a temporary object, see the section "Creating an Object in
Backup Mode" below.

namelength
Length of "pathname," in bytes. This is a 2-byte integer. To create a temporary object, (/\
see the section "Creating an Object in Backup Mode" below. S
type-uid

UID of the type to be created, in UID _$T format. This data type is 8 bytes long. See the

10S Data Types section for more information.

If you specify the predefined UID _ $NIL, IOS_$CREATE creates an object of the default

type, which is currently unstructured ASCII (UASC). You can also specify any of the

system’s predefined type UlDs listed below, or any valid user-created type UID. 7
“

DOMAIN currently supports a set of standard object types which include the following

types. (Note that objects created by type managers return manager-specific type UIDs.)

Type UID Object

UASC__$UID UASC object

RECORDS _$UID Record-oriented object 7

HDR _ UNDEF _ $UID Nonrecord-oriented object

OBJECT _FILE_$UID Object module object (compiler or binder output)

SIO __$UID Serial line descriptor object

MT _$UID - Magnetic tape descriptor object

PAD_$UID Saved Display Manager transcript pad

INPUT _PAD _ $UID Display Manager input pad

MBX_$UID Mailbox object
-
{
N

108 108=-12




Type UID i Object

DIRECTORY _$UID Directory

NULLDEV _$UID Null device
create-options

I0S_ $CREATE

Specifies the action to be taken if the object already exists, or specifies the creation of an
unnamed object, in IOS__$CREATE _MODE _ T format. This is a 2-byte integer. Specify

one of the following predefined values:

I0S_$NO_PRE_EXIST MODE

I0S_$PRESERVE _MODE

I0S_$RECREATE _MODE

10S_$TRUNCATE _MODE

I0S__$MAKE_ BACKUP _MODE

I0S_$LOC_NAME_ONLY_MODE

Return the IOS__ $ALREADY _ EXISTS error
status code if an object with the specified
name already exists.

Preserve the contents of the object if an
object with the specified name already exists.
Then open the object and position the stream
marker to the beginning of the object (BOF)
unless you set the

IOS _$POSITION _ TO _ EOF open option.
Use this mode to append data to an existing
object.

Recreate the object if an object with the
specified name already exists. Essentially, this
option deletes the existing object and creates a
new one. The new object will have the default
set, of attributes for that object type.

Open the object and delete the contents if an
object with the specified name already exists.
Use this mode to create an object to preserve
the attributes of the specified object.

Create a temporary object with the same type
and attributes as the object specified in the
pathname if an object with the specified name
already exists. Use this mode to create a
backup object. (See below for detailed
description.)

Create a temporary unnamed object. Use the
pathname to specify the location of the object.
I0S _ $CREATE will locate the temporary
object on the same volume as the object
specified in the pathname.

108-13 108



I0S__$CREATE

open~options

Open options, in I0S_ $OPEN_ OPTIONS _ T format. This is a 2-byte integer. Specify a
combination of the following set of predefined values:

JOS_$NO__OPEN_DELAY__OPT Return immediately, instead of waiting for the
open call to complete.

I0S_$WRITE _OPT Permit writing data to a new object. If a
- program tries to write on a stream for which
you have not specified this option, it returns
an error status. Note that when creating an
object, the IOS manager automatically sets
this value because it assumes that when you
create an object, you will want to write to it.

10S_$UNREGULATED _ OPT Permit shared (unregulated) concurrency
mode.
I0S_$POSITION__TO _EOF _ OPT Position the stream marker at the end of the

object (EOF). Use this to append data to an
existing object.

IOS_$INQUIRE _ONLY _OPT Open the object for attribute inquiries only;
do not permit reading or writing of data.

IOS_$READ _INTEND _WRITE _OPT  Open the object for read access with the
intent to eventually change the object’s access
to write access. This allows other processes to
read the object; but they cannot have write or
read-intend-write access.

OUTPUT PARAMETERS

stream-id

Number of the stream on which the object is open, in IOS__$ID _ T format. Thisis a
2-byte integer.

Subsequent IOS calls use this number to identify the stream opened by this call.

status

10S

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

I0S-14

TN



I0S_ $CREATE

USAGE

If the pathname specifies an object that does not exist, [0S _ $CREATE creates a new
object of the specified type using that pathname and opens a stream to it. If the object
already exists, the create mode option specified in the call determines which action

I0S _$CREATE will perform.

Both IOS_$CREATE and IOS_$OPEN open a stream to an object. However,
IOS _$CREATE creates the object if it does not exist, whereas IOS_ $OPEN returns an
error if the object does not exist.

Inquiring about Object Attributes

When IOS__$CREATE creates an object, the object has a default set of attributes (the
default attributes depend on the type created). These attributes fall into three categories:
manager, object, and connection attributes. To determine which attributes the newly
created object has, you can use the following calls:

I0S _$INQ_MGR _FLAGS

Returns the attributes that the object’s type manager defines.
I0S_$INQ __OBJ_FLAGS

Returns the attributes of the object.

I0S_$INQ_CONN_ FLAGS

Returns the attributes of the stream connection.

To change object or connection attributes, use the IOS__$SET _OBJ__FLAGS, and
I0S_$SET_ CONN _FLAGS calls, respectively. The attributes that you can change
depend on the object type. Note that you cannot change manager attributes because the

type manager determines them. For details on writing a type manager, see the Extending
the DOMAIN Streams Factlity manual.

Creating a Temporary Object

IOS _$CREATE allows you to create a temporary object two ways. To create a temporary
object on your boot volume, specify a null value in "pathname" and a value of 0 in
"namelength." To create a temporary object on another volume, specify the pathname of
an existing object on that volume with the IOS_$LOC_NAME _ONLY__MODE option in
“create-options." IOS__$CREATE creates a temporary unnamed object on the same
volume {node) as the object you specify in "pathname."

Creating an Object in Backup Mode

You can create a new, unnamed temporary object by specifying the create mode option,
I0S _$MAKE _BACKUP _MODE. The call creates the new object with the same type and
attributes as the object specified by "pathname" (if it exists), and it is created on the same
volume (node).

I0S_$CREATE does not open or modify the object specified by "pathname," it merely
examines the object to extract its attributes. Even though IOS__$CREATE does not
modify the "pathname," it conceptually replaces the object, so this operation requires write
access to the object.

108=15 108




I0S_ $CREATE

108

When IOS__ $CLOSE closes the stream created with this call, it changes the object specified
by "pathname" to "pathname.bak." It changes the new object (formerly the temporary,
unamed object) to "pathname," and makes the object permanent.

If a ".bak" version of the object already exists, IOS_ $CLOSE deletes it. (The caller must
have either D or P rights to delete the object.) If the ".bak" object is locked at the time
IOS _ $CLOSE is called, the object will be deleted when it is unlocked.

If "pathname" does not exist at the time that JOS_ $CREATE is called, then
I0S _ $CREATE performs the ordinary functions.

10S-16

o

N




10S_$DELETE

10S__$DELETE

Deletes an object and closes the associated stream.

FORMAT

10S_$DELETE (stream-id, status)

INPUT PARAMETERS

stream=-id
Number of a stream on which the object is open, in IOS_$ID _ T format. This is a 2-byte
integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

USAGE
I0S_$DELETE deletes the object, then closes the specified stream.

This call actually sets the object attribute IOS__$OF _ DELETE__ ON__CLOSE to TRUE,
then closes the stream. So, if the type manager does not allow an object to set the
delete-on-close attribute, the delete call fails. In this case, the call closes the stream, but
does not delete the object.

If the object is open on more than one stream, IOS__$DELETE marks the object for
deletion, but the object still exists until all streams to that object are closed.

10S=17 108



10S_ $DUP

I0S_ $DUP

Creates a copy of a specified stream ID.

FORMAT

return_stream id = IOS_$DUP (stream_id to_duplicate, copy stream id, status)

RETURN VALUE

return__stream __id

Number of the new stream created, in IOS__$ID _ T format. This is a 2-byte integer.

INPUT PARAMETERS

stream__id _ to__duplicate

Number of the stream to duplicate, in JOS_$ID _ T format. This is a 2-byte integer. This
stream number remains a valid connection to the object after IOS__$DUP completes
successfully.

copy _ stream _ id

Number of the stream to use as the newly created copy, in IOS_$ID _ T format. This is a
2-byte integer.

If "copy _stream __id" is free, IOS_ $DUP returns that value in "return _stream _id." If
"copy __stream _id" is in use, IOS_$DUP begins searching from that number upward
(higher numbers) until it finds a free stream number and returns that number in

"return_ stream__id."

If the actual number of "copy __stream _id" is insignificant, specify the value 0. This value
causes JOS_ $DUP to begin searching from the lowest possible stream number and return
the first free stream number it finds.

OUTPUT PARAMETERS

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

USAGE

10§

Use IOS_$DUP to create a copy of an existing stream ID. The new stream ID refers to the
same connection as the existing stream ID. Note that you must close both streams with
I0S _$CLOSE before the stream connection actually closes.

You can use IOS_$DUP to keep a stream connection open when passing it to a subroutine.
Use IOS _$DUP to create a copy of the stream ID before passing it. This way, the
subroutine cannot close the connection to the object because all copies of the stream
connection must be closed before the connection itself closes.

105-18

TN

AN

—




O

10S__$DUP

IOS_$DUP is identical to IOS__$REPLICATE except that IOS__$DUP looks for a free
stream number in ascending order from the specified stream ID, while IOS_ $REPLICATE
looks in descending order. Note that you use IOS_$DUP or 10S_$REPLICATE to copy
existing stream ID’s, both the existing and new stream ID’s remain valid connections.
However, you use IOS_ $SWITCH to replace stream IDs; you "switch" the connection from
the existing stream ID to the new stream ID.

I10S-19 (O]



I0S_$EQUAL

10S_$EQUAL

Determines whether two stream IDs refer to the same object.

FORMAT

same IOS_$EQUAL (stream id, stream id too, status)

RETURN VALUE

same
Boolean value that indicates whether the specified stream IDs refer to the same object.
“*Same" is TRUE if the streams refer to the same object, it is FALSE if they do not.

INPUT PARAMETERS

stream _id
Number of a stream being compared, in IOS_$ID _ T format. This is a 2-byte integer.

stream __id_ too
Number of a stream being compared, in IOS_$ID _ T format. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data typeis 4 bytes long. See the IOS
Data Types section for more information.

USAGE

Use IOS _$EQUAL to determine whether two stream IDs refer to the same object. An
application program can use this call to avoid using two streams when one is sufficient.

108 108=-20

)

)

)




I0S_$FORCE_ WRITE_FILE

I0S_$FORCE _WRITE _FILE

Forcibly writes an object to permanent storage.

FORMAT
I0S_$FORCE_WRITE FILE (stream-id, status)

INPUT PARAMETERS

stream-~-id
Number of the stream on which the object is open, in IOS_ $ID _ T format. Thisis a
2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the I0S
Data Types section for more information.

USAGE

IOS _$FORCE_ WRITE _ FILE forcibly writes the object to stable storage. Stable storage
depends on the object’s type, however, in most cases, it is the disk. For example, stable
storage for a magnetic tape descriptor is the tape.

Use I0S_$FORCE_ WRITE _ FILE before closing the stream to ensure that the object is
stored safely in the event of a system crash.

105=21 108



10S_$GET

10S_ $GET

Moves data from a stream into a buffer.

FORMAT

ret-length = I0S_$GET (stream-id, get—options, buffer, buffer-size, status)

RETURN VALUE

ret~length
Amount of data moved, in bytes. This is a 4-byte integer. -

"Ret-length" equals the amount of data read; "ret-length" equals 0 if IOS_ $GET does not
return any data.

If the length of the data read exceeds the amount specified in "data-size," IOS_ $GE
performs the following: ‘

e Reads enough data to fill the requested size
e Sets "ret-length" equal to "data-size"
o Positions the stream marker to the first unread byte

e Returns the IOS__ $BUFFER _ TOO _ SMALL status code to indicate that this
condition has occurred

You can inquire about how many bytes remain to be read in the current record by calling

I0S_$INQ_REC_REMAINDER.

INPUT PARAMETERS

stream=-id

Number of the stream on which the object is open, in IOS__$ID _ T format. This is a
2-byte integer.

get-options
Options that control how IOS__$GET performs the get operation, in
I0S_$PUT_ GET__OPTS_ T format. This is a 2-byte integer. Specify a combination of
the following set of predefined values:

I0OS _$COND_OPT Reads data, if available. (For example, data
on an SIO line is not always available
immediately.) If the data is not available,
I0S_$GET returns the
IOS_$GET _ CONDITIONAL _ FAILED
status code and sets the return value of
"ret-length" to 0.

I0S _$PREVIEW _OPT Reads data but does not update the stream
marker.

108 108=-22

TN

~——




o

10S_$GET

IOS_$NO_REC_BNDRY_OPT Ignores record boundaries while reading data.
For example, it ignores NEWLINE characters
in a UASC object, which guarantees that the
call fills the specified buffer. Some type
managers might not support this option.

I0S_$PARTIAL _RECORD _OPT Not meaningful for this call.

buffer-size
Maximum number of bytes to be moved to the buffer. This is a 4-byte integer.

OUTPUT PARAMETERS

buffer
Buffer to store the data. This is a character array.

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

USAGE

You can use either of IOS__$LOCATE or IOS_$GET to read data from system objects.
IOS_$GET copies the data into a buffer, while IOS_ $LOCATE returns the virtual
address of the data.

In most cases, use the JOS__$LOCATE call to read data because it is faster
(IOS_$LOCATE does not perform a copy).

You will want to use IOS__$GET when you need to read more data than can be obtained in

one call, because the pointer remains valid for only one call. For example, use IOS_$GET
when you need to read and rearrange a number of lines from an object. ‘

105=-23 : 108



I0S_$GET_DIR

I0S_$GET_DIR

Gets the current working or naming directory.

FORMAT

I0S_$GET_DIR (pathname, namelength, dir_type, status)

INPUT PARAMETERS

dir _type
Option specifying which type of directory to get, in IOS__$DIR_ TYPE _ T format.
Specify one of the predefined values:

IOS _$WDIR Name of the current working directory.

IOS_$NDIR Name of the current naming directory.

OUTPUT PARAMETERS

pathname

Name of the directory to get, in NAME_ $PNAME _ T format. This is an array of up to
256 characters.

namelength
Length of "pathname." This is a 2-byte integer.

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the I0S

Data Types section for more information.
USAGE
Use this call to get the current working or naming directory. It returns the name of the

directory in the "pathname" parameter. If you want to change the current working or
naming directory, use IOS__$SET _ DIR.

I0S 10S-24

TN




10S_$GET _EC

10S__$GET _EC

Gets a pointer to an eventcount for a stream event.

FORMAT

I0S_$GET_EC (stream—id, stream-key, eventcount-pointer, status)

INPUT PARAMETERS

stream-~-id

Number of stream on which the eventcount is waiting, in IOS_$ID _ T format. This is a
2-byte integer.

stream-key
The key that specifies which type of eventcount to get a pointer to, in IOS_$EC_KEY_ T
format. This is a 2-byte integer. Specify one of the following predefined values:

IOS_$GET_REC_EC_KEY An eventcount that advances when the stream
contains data for you to get. This eventcount
advances whenever there is anything to get from an
open stream.

I0S_$PUT_REC_EC_KEY An eventcount that advances when a previously
*full" stream might now be able to accept data. A
full stream is a stream that I0S__ $PUT will block.

OUTPUT PARAMETERS

eventcount-pointer
A pointer to the eventcount, in EC2__$PTR _ T format. This is a 4-byte integer address

that points to an array of eventcounts. See the EC2 Data Types section for more
information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IOS

Data Types section for more information.
USAGE
JOS_$GET _EC is valid for all streams, including those open to objects, pads, mailboxes,

and devices. After you use this call to get a stream event, use EC2 calls to read eventcount
values and wait for events.

You can wait for two types of events on a stream:

e The IOS-get eventcount indicates that there might be input to get from an open
stream.

e The IOS-put eventcount indicates that a previously "full," or blocked, stream
might now have enough room to accept the data.

An example of using the JOS-get eventcount is to wait for keyboard input. Whenever the

108=25 108



I0S_$GET _EC

108

user types data, the system advances the eventcount associated with the user’s input pad. If
input pad is in normal (or cooked) mode, the eventcount advances after each carriage
return, if the input pad is in raw mode, the eventcount advances after each keystroke. (For
details on cooked and raw mode, see the Display Manager chapter in the Programming
with General System Calls manual.)

An example of using the IOS-put eventcount is to wait on an MBX channel that might get
blocked. That is, IOS__$PUT blocks streams associated with MBX channels if a server is
not ready for the data from the channel. When it’s possible to write data without blocking,
the system advances the IOS-put eventcount.

For more information on eventcounts, see the Programming with General System Calls
and the Programming with System Calls for Interprocess Communication manuals.

105-26

N




O

10S_$GET _HANDLE

10S_$GET _HANDLE

Converts a stream ID to a handle pointer.

FORMAT
handle = IOS_$GET_HANDLE (stream-id, type-uid, status)

RETURN VALUE

handle

Pointer to the handle associated with the stream connection, in UNIV_PTR format. This is
a 4-byte integer.

INPUT PARAMETERS

stream-id
Number of the stream that identifies an open stream, in I0OS__$ID _ T format. Thisis a
2-byte integer.

type-uid
Type UID of the object that the type manager handles, in UID _$T format. Specify the

type UID of the manager you are writing. This data type is 8 bytes long. See the IOS Data
Types section for more information.

OUTPUT PARAMETERS

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

USAGE

NOTE: This call is generally of interest to type manager writers only.

Type manager writers use this call to access an object when implementing an operation that
is not predefined by the system. When the type manager implements such an operation, it
is referred to as a direct manager call because the I/O switch does not route the call
between the client call and the manager. Without switching, the manager receives a stream
ID from a client. To access the object, the manager must then call IOS_$GET_HANDLE
to obtain the object handle associated with the stream ID.

IOS _$GET _HANDLE returns an error if the stream ID is not associated with an object of
the type UID specified by "type_ uid." Specify the type UID of the manager you are

writing so that the manager can be sure it has a stream to an object of its type.

See the Using the Open System Toolkit to Extend the Streams Facility manual for more
information.

108-27 10§



I0S_$INQ_BYTE_POS

10S_$INQ_BYTE_POS

N
Returns the byte position of the stream marker.
FORMAT
byte-position = IOS_$INQ BYTE POS (stream-id, position-option, status)
RETURN VALUE
byte~-position
Byte position of the stream marker. This is a 4-byte integer. Note that byte positions are
zero-based; consequently the byte position of the beginning of an object (BOF) is 0.
INPUT PARAMETERS
stream=-id
Number of the stream on which the object is open, in IOS_ $ID _ T format. This is a C

2-byte integer.

position-option
Value specifying the byte position to return, in IOS_$POS_OPT _ T format. Thisis a
2-byte integer. Specify one of the following predefined values:

I0S_$CURRENT Returns the byte position of the current stream marker.

I0S_$EOF Returns the byte position of the stream marker at the end of
the object (EOF). This is the number of bytes in the object.

)

I0S_$BOF Return the byte position of the stream marker at the beginning
of the object (BOF). This value is always 0.

OUTPUT PARAMETERS

status (\
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the I0S .
Data Types section for more information.

USAGE

To obtain the offset of the stream marker, use IOS_$INQ__BYTE _ POS. (Use
I0S_$INQ__REC__POS if your object is record-oriented.)

To get the offset of the stream marker at the beginning or end of the object, specify
I0S_$BOF or IOS__$EOF, in the "position-option" parameter. Specify

IOS _ $CURRENT to get the offset of the stream marker from the beginning of the object.
Once you have the returned offset, you can move the stream marker to desired location by
calling IOS _ $SEEK.

This call allows you to perform a nonkeyed seek by specifying an absolute byte position, or
by getting an offset from an absolute position, and moving the stream marker to it. O

108 [0S=-28




10S_$INQ_BYTE_POS

Whether you perform a nonkeyed or keyed seek depends on how the object’s data is
represented. For example, programs that need to perform "arithmetic* on the data (such
as comparing two positions) will use nonkeyed seek operations. Programs that require only
the ability to move from one position to another in an object will use keyed seek operations.

105-29 I0S



10S_$INQ_ CONN_ FLAGS

10S_$INQ_CONN_FLAGS

Returns the attributes associated with a connection.

FORMAT

conn_flags = IOS_$INQ_CONN FLAGS (stream—id, status)

RETURN VALUE

conn _ flags :
A set (bit mask) indicating which attributes of the specified connection are set, in
IOS_$CONN_FLAG_ SET format. This is a 4-byte integer. Any combination of the
following set of predefined values, in IOS_ $CONN _FLAG __ T format, can be returned. If
the set contains the value, the connection has the attribute.

IOS_$CF_TTY Connection behaves like a terminal.

I0S_$CF__IPC Connection behaves like an interprocess
communication (IPC) channel.

I0S_$CF_VT Connection behaves like a DOMAIN Display
Manager pad.
I0S _$CF_WRITE Connection can be written to.
I0S_$CF _ APPEND Connection’s stream marker will be positioned
' at the end of the object (EOF) before each put
call.
10S_$CF_UNREGULATED Connection is open for unregulated (shared)

concurrency mode.

IOS_$CF_READ_ INTEND _ WRITE Connection is open for read access, and can be
changed to write access. Other connections
can have read access, but not write or
read-intend-write access.

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in IOS_$ID _ T format. Thisis a
2-byte integer.

OUTPUT PARAMETERS

status ’
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the I0S
Data Types section for more information.

(O] 105=-30

@




I0S_$INQ_CONN_FLAGS

USAGE

Use this call to determine which connection attributes are in effect for the specified stream.
To change object or connection attributes, use the I0OS_$SET_OBJ_FLAGS, and

I0S__$SET__ CONN__FLAGS calls respectively. Which attributes you can change depends
on the object type.

105-31 108



10S_$INQ_ CUR_REC_LEN

I0S_$INQ__CUR_REC_LEN

Returns the length of the record at the current stream marker.

FORMAT

rec-length = IOS_$INQ_CUR_REC LEN (stream-id, status)

RETURN VALUE

rec-length
Length of the current record. This is a 4-byte integer.

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in IOS__$ID __ T format. This is a
2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the I0S
Data Types section for more information.

USAGE

Use IOS _$INQ__ CUR_REC_ LEN to determine the length of the record at the current
stream marker of the specified stream.

The object specified must be record-oriented (for example, RECORDS _ $UID); otherwise,
IOS _$INQ__CUR__REC__LEN returns an error.

I0S 105=32

O



10S_$INQ_FILE_ ATTR

I0S_$INQ_FILE_ATTR

Returns object usage attributes including date and time created, date and time last used,
date and time last modified, number of blocks in the object.

FORMAT

I0S_$INQ_FILE ATTR (stream id, dt—created, dt-modified, dt-used, blocks, status)

INPUT PARAMETERS

stream=-id

Number of the stream on which the object is open, in IOS_$ID _ T format. This is a
2-byte integer.

OUTPUT PARAMETERS

dt-created

Date and time the object was created, in TIME _ $CLOCKH _ T format. This is a 4-byte
integer.

dt-modified

Date and time the object was last modified, in TIME_ $CLOCKH _ T format. This is a
4-byte integer.

dt-used

Date and time the object was last used, in TIME _ $CLOCKH _ T format. This is a 4-byte
integer.

blocks
The number of 1024-byte blocks that the object occupies. This is a 4-byte integer.

status

Completion status, in STATUS __$T format. This data type is 4 bytes long. See the I0OS
Data Types section for more information.

USAGE

Use IOS__$INQ_FILE__ATTR to obtain a time stamp for an object and to determine the
amount of space that an object occupies.

105-33 108



10S_$INQ_ FULL_KEY

JOS_$INQ_FULL_KEY

Returns a full seek key.

FORMAT
I10S_$INQ_FULL_KEY (stream-id, position-option, full-key, status)

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in IOS_$ID _ T format. Thisis a
2-byte integer.

position-option
Value specifying the position to return a full seek key for, in IOS_$POS_ OPT _ T format.
This is a 2-byte integer. Specify only one of the following predefined values:

I0S_$CURRENT Return the full seek key of the current marker.

I0S _$EOF Return the full seek key of the end of the object (EOF) marker.

IOS _$BOF Return the full seek key of the beginning of the object (BOF)
marker.

OUTPUT PARAMETERS

full-key
Full seek key to be used in subsequent seeks, in IOS_$SEEK_KEY _ T format. This data
type is 8 bytes long. See the IOS Data Types section for more information.

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

USAGE

IOS _$INQ__FULL _KEY returns a seek key based on the position option you specify, the
current stream marker position, beginning or end of the object.

Use seek keys to perform random access of data. Typically, you use this call to inquire
about a seek key before writing some data, and then store the seek key. To access the data
at a later point in time, position the stream marker by calling the

IOS_$SEEK _FULL_KEY call with the stored seek key, and get the data with an IOS get
operation (IOS__$GET or I0S_ $LOCATE).

Use seek keys merely as an index -- do not rely on the contents of the keys. The contents of
seek keys remain private to the IOS manager, which guarantees only that the seek key
returns to the position it describes.

Some object types support seek key positioning, but do not support record or byte
positioning. Use seek keys for repositioning if your application does not need the
"arithmetic" properties of record- or byte-positioning (that is, the ability to compute
positions given positions). :

I0S 105-34

77N




10S_$INQ_FULL_KEY

The DOMAIN system offers both short (4-byte) and full (8-byte) seek keys. Because short
seek keys require half the storage space of full seek keys, you might want to use short seek
keys if your application program stores a large number of seek keys. However, short seek
keys are limiting in that you can only indicate record boundary positions, while full seek
keys allow you to indicate any position.

108=35 I0S



10S_$INQ_MGR_FLAGS

I0S_$INQ_MGR_FLAGS

Returns the attribute set of an object’s manager.

1

FORMAT
mgr_flags = I0S_$INQ MGR_FLAGS (stream-id, status)

RETURN VALUE

mgr_flags
A set (bit mask) indicating the attributes of the specified object’s manager, in .
IOS_$MGR_FLAG _SET format. This is a 4-byte integer. Any combination of the
following set of predefined values, in IOS_$MGR _ FLAG _ T format, can be returned. If
the set contains the value, the manager has the attribute and can perform the following

I0S

operations:

I0S_$MF_ CREATE

I0S_$MF_CREATE BAK

10S__$MF _ IMEX

I0S_$MF _FORK

I0S_$MF_FORCE_ WRITE

I0S_$MF _ WRITE

I0S_$MF_SEEK _ABS

I0S_$MF_SEEK _SHORT

I0S_$MF_ SEEK_FULL

I0S_$MF__SEEK_BYTE

JOS_$MF_SEEK _REC

I0S_$MF_SEEK_BOF

10S_$MF_REC_TYPE

Manager permits type to create objects.

Manager permits type to create backup (.bak)
objects.

Manager permits type to export streams to
new processes.

Manager permits type to pass streams to
forked processes.

Manager permits type to force-write object

contents to stable storage (for most types, this

is the disk).
Manager permits objects to be written to.

Manager permits objects to perform absolute
seeks.

Manager permits objects to perform seeks
using short (4-byte) seek keys.

Manager permits objects to perform seeks
using full (8-byte) seek keys.

Manager permits objects to perform seeks to
byte positions.

Manager permits objects to perform seeks to
record positions.

Manager permits objects to perform seeks to
the beginning of the object.

Manager supports different record type
formats.

105~36

®




O

10S_$INQ_MGR_FLAGS

I0S_s$MF__TRUNCATE Manager permits objects to be truncated.

I0S_$MF__UNREGULATED Manager permits objects to have unregulated

(shared) concurrency mode.

IOS _$MF _SPARSE Manager permits objects to be written as
sparse objects.

IOS_$MF_READ_INTEND_WRITE Manager permits objects to have
read-intend-write access.

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in IOS_$ID __ T format. This is a
2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

USAGE

Use I0S_$INQ_MGR _ FLAGS to determine what operations an object’s type manager
can perform.

Depending on the nature of the object, a type manager permits some of the operations
identified by "mgr-flags." A manager usually will not support operations that are
irrelevant for the object type. For example, if you called IOS_$INQ MGR __FLAGS
specifying a stream open on an SIO line, the set returned would not include any

IOS _$MF _ SEEK attributes, since serial lines do not support seeking.

Note that even if an object’s manager permits an operation, the object itself can prevent the
operation because the object’s object and connection attributes must permit the operation
as well. For example, a manager’s attribute set might contain the attribute that permits
writing to a file (IOS_$MI'_ WRITE), but a specific object’s connection attribute set
might not include the IOS__$CF_ WRITE attribute, which permits writing on the
connection. In this case, you cannot write to that particular object. However, you could
possibly write to another object of the same type if the object’s IOS__$CF_ WRITE
attribute is set for its stream connection.

To change object or connection attributes, use the IOS__$SET _ OBJ__FLAGS and
I0S _$SET _ CONN _FLAGS calls, respectively. Which attributes you can change
depends on the object type. Note that you cannot change manager attributes because the

type manager determines them. For details on writing a type manager, see the Eztending
the DOMAIN Streams Facility manual.

105=-37 108



10S_$INQ_ OBJ_FLAGS

10S__$INQ_OBJ_FLAGS

Returns the attribute set associated with an object.

FORMAT
obj-flags = I0S_$INQ_OBJ FLAGS (stream-id, status)

RETURN VALUE

obj-flags
A set (bit mask) indicating the attributes of the specified object, in
IOS_$0OBJ_FLAG _SET format. This is a 4-byte integer. Any combination of the
following set of predefined values, in IOS__$OBJ_FLAG _ T format, can be returned. If
the set contains the value, the object has the attribute and can perform the following

operations:

I0S_$OF_DELETE_ ON_ CLOSE Object will be deleted when all its associated
streams close.

I0S_$OF_SPARSE _OK Object can be written as a sparse object.

I0S_$OF _ASCII Object contains ASCII data.

I0S _$OF _FTNCC Object uses FORTRAN carriage control
characters.

I0S_$OF _ COND Get or put calls to the object will be

performed conditionally, as if the
IOS _$COND _ OPT was specified on a get or
put call.

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in IOS_$ID _ T format. This is a
2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

USAGE

Use this call to determine which object attributes are in effect for the object on the specified
stream.

To change object or connection attributes, use the IOS__$SET_ OBJ_FLAGS, and
IOS_$SET_ CONN_ FLAGS calls respectively. The attributes that you can change
depends on the object type.

108 105-38

)




I0S_$INQ_PATH _NAME

10S_$INQ_PATH NAME

Returns the pathname of the object open on a specified stream.

FORMAT

I0S_$INQ_PATH NAME (stream-id, name-type, pathname, namelength, status)

INPUT PARAMETERS

stream=-id
Number of the stream on which the object is open, in IOS__$ID _ T format. Thisis a
2-byte integer.

name-type
Format of the returned pathname, in IOS_$NAME__TYPE_ T format. Specify one of the
following predefined values:

I0S_3$ROOT_NAME
Return the absolute pathname, relative to the network root directory
(//). For example, "//node/sid/file."

I0OS_$WDIR _NAME
Return just the leaf name if the object’s pathname is a name in the
current working directory. Otherwise, return the absolute pathname.

I0S _$NDIR _ NAME
Return just the leaf name if the object’s pathname is a name in the
current naming directory. Otherwise, return the absolute pathname.

I0S_$NODE _ NAME
Return a name relative to the node’s entry directory (/) if the object’s
pathname is a name in the boot volume. Otherwise, return the absolute
pathname. For example, " /sid/file."

IOS _$NODE_DATA_FLAG
Return just the leaf name if the object’s pathname is a name in the
‘node__data directory. Otherwise, return the absolute pathname.

IOS _$LEAF_NAME
Return just the leaf name regardless of the object’s pathname. For
example, if the object’s pathname is */a/b/c," it returns "c."

I0S _$RESID _NAME
Return the residual part of a pathname if the stream is open using
extended naming. (Extended naming allows you to add additional text to
the end of a pathname.)

OUTPUT PARAMETERS
pathname

Name of the object associated with the stream ID, in NAME_ $PNAME __ T format. This
is an array of up to 256 characters.

10S8-39 (O}



I0S_$INQ_PATH_NAME

namelength
Length of the pathname. This is a 2-byte integer.

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

USAGE

Use this call to determine the pathname of an object associated with the specified stream
ID. Generally, use this call in cases where a program has been passed a stream ID and needs
the associated pathname.

108 10S=-40

N4




10S_$INQ_REC_POS

I0S__$INQ_REC_ POS

Returns the record position of the stream marker.

FORMAT

record_position = IOS_$INQ REC_POS (stream-id, position-option, status)

RETURN VALUE

record-position
Record position of the stream marker. This is a 4-byte integer. Note that record positions
are zero-based; consequently, the record position of the beginning of the object is 0.

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in IOS__$ID __ T format. Thisis a
2-byte integer.

position-option
Value specifying the record position to return, in IOS__$POS_ OPT _ T format. Thisis a
2-byte integer. Specify one of the following predefined values:

I0S_$CURRENT Return the record position of the current stream marker.

I0S_$EOF Return the record position of the end of the object (EOF)
stream marker. This is the number of records in the object.

I0S _$BOF Return the record position of the beginning of the object (BOF)
stream marker. This value is always 0.

OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the I0S
Data Types section for more information.

USAGE

To obtain the offset of the stream marker for record-oriented objects, use
I0S_$INQ_REC_ POS. (UselOS_$INQ__BYTE_ POS if your object is not

record-oriented.)

To get the offset of the stream marker at the beginning or end of the object, specify
I0S_$BOF or IOS_$EOF, in the "position-option" parameter. Specify
I0S_$CURRENT to get the offset of the stream marker from the beginning of the object.
Once you have the returned offset, you can move the stream marker to desired location by
calling IOS__$SEEK.

This call allows you to perform a nonkeyed seek by specifying an absolute byte position, or
by getting an offset from an absolute position, and moving the stream marker to it.

105-41 108



10S_$INQ_REC_POS

Whether you perform a nonkeyed or keyed seek depends on how the object’s data is
represented. For example, programs that need to perform "arithmetic" on the data (such
as comparing two positions) will use nonkeyed seek operations. Programs that require only
the ability to move from one position to another in an object will use keyed seek operations.

108 105-42




I0S__$INQ_REC_REMAINDER

10S_$INQ__REC_ REMAINDER

Returns the number of bytes remaining in the current record.

FORMAT
bytes = IOS_$INQ_REC REMAINDER (stream-id, status)

RETURN VALUE

bytes
Number of bytes remaining in the current record. This is a 4-byte integer.

INPUT PARAMETERS

stream-id
Number of the stream on which the file is open, in IOS _$ID T format. This is a 2-byte
integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format.' This data type is 4 bytes long. See the IOS
Data Types section for more information.

USAGE

Use IOS _$INQ _ REC_ REMAINDER with the IOS__$GET or IOS_ $LOCATE calls. If
I0S _$GET or IOS__$LOCATE fills the specified buffer, but has not yet finished reading a
record, it returns the JOS_$BUFFER _ TOO _ SMALL error status code. At this point,
use I0S_$INQ__REC_REMAINDER to determine the number of bytes in the record that
remain to be read. If the entire record has been read, the value of "bytes" is undefined.

105-43 108



10S_$INQ_REC_TYPE

I0S_$INQ_REC_ TYPE

Returns the record type of an object.

FORMAT
record-type = IOS_$INQ_REC_TYPE (stream-id, status)

RETURN VALUE
record-type

Type of record format used in the specified object, in IOS_$RTYPE_-T format. Thisis a
2-byte integer. Returns one of the following predefined values:

I0S_$V1 Variable-length records with count fields.
IOS_$F1 Fixed-length records without count fields.
IOS _$F2 Fixed-length records with count fields.

IOS _$EXPLICIT _F2 Fixed-length records that IOS_$PUT cannot implicitly change

to variable-length records.

I0S_ $UNDEF No record structure.

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in IOS__$ID _ T format. Thisis a
2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

USAGE

Use I0S_$INQ__REC _ TYPE to determine how records within an object are formatted.
You can change the record type of a record-oriented object by calling
I0S_$SET_REC_TYPE.

By default, a record-oriented object has fixed-length records (IOS__$F2). They remain
fixed-length records until IOS__$PUT writes records of different lengths. At this point,

IOS _$PUT implicitly changes the objects to variable-length type (IOS_ $V1). In some
cases, you might want to explicitly set the record type to IOS__ $EXPLICIT _F2 so that an
attempt to write a variable-length record results in an error. To do so, use the
corresponding call, IOS_$SET__REC_ TYPE.

108 10S=44

P




O

I0S_$INQ_SHORT _KEY

10S_$INQ_SHORT _KEY

Returns a short seek key.

FORMAT
short-key = IOS_$INQ SHORT SEEK (stream-id, position-option, status)

RETURN VALUE

short-key
Short seek key to be used in subsequent seeks. This is a 4-byte integer.

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in IOS__$ID _ T format. Thisis a
2-byte integer.

position-option
Value specifying the position to return, in IOS__$POS_OPT _ T format. This is a 2-byte
integer. Specify only one of the following predefined values:

IOS _$CURRENT Return the short seek key of the current marker.

I0S__$EOF Return the short seek key of the end of the object (EOF)
marker.

I0S_$BOF Return the short seek key of the beginning of the object (BOF)
marker.

OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

USAGE

IOS _$INQ__SHORT _KEY returns a seek key based on the position option you specify --
the current stream marker position, beginning or end of the object.

You use seek keys to perform random access of data. Typically, you use this call to inquire
about a seek key before writing some data, and then store the seek key. To access the data
at a later time, position the stream marker by calling the IOS__$SEEK _SHORT _ KEY
call with the stored seek key, and get the data with an IOS get operation (I0S_$GET or
I0S _$LOCATE).

Use seek keys merely as an index -- do not count on the contents of the keys. The contents
of seek keys remain private to the IOS manager, which guarantees only that the seek key
returns to the position it describes.

105-45 10S



10S_$INQ_ SHORT _KEY

Some object types support seek key positioning, but not record or byte positioning. Use
seek keys for repositioning if your application does not need the "arithmetic" properties of
record- or byte-positioning (that is, the ability to compute positions given positions).

The DOMAIN system offers both short (4-byte) and full (8-byte) seek keys. Because short
seek keys require half the storage space of full seek keys, you might want to use short seek
keys if your application program stores a large number of seek keys. However, short seek
keys are limiting in that you can only indicate record boundary positions, while full seek
keys allow you to indicate any position.

108 ’ 105-46

)




10S_$INQ_TYPE_UID

I0S_$INQ__TYPE_UID
Returns the type UID of an object.

FORMAT

I10S_$INQ_TYPE UID (stream-id, type-uid, status)
INPUT PARAMETERS

stream-id

Number of the stream on which the object is open, in IOS_ $ID__ T format. This is a
2-byte integer.

OUTPUT PARAMETERS

type-uid

Type UID of the object, in UID _$T format. This data type is 8 bytes long. See the IOS
Data Types section for more information.

DOMAIN currently supports a set of predefined standard object types which include the
following types. (Note that users can also define their own type UIDs by writing a type
manager. See the Using the Open System Toolkit to Extend the Streams Facility manual

for details. )

Type UID
UASC__$UID
RECORDS _$UID
HDR_ UNDEF _ $UID
'OBJECT_FILE __$UID
SIO_s$UID

MT _s$UID

PAD _ $UID

INPUT _PAD _ $UID
MBX_ $UID
DIRECTORY __$UID

NULLDEV_$UID

status

Object

UASC object

Record-oriented object
Nonrecord-oriented object

Object module object (compiler or binder output)
Serial line descriptor object

Magnetic tape descriptor object
Saved display manager transcript pad
Display manager input pad

Mailbox object

Directory

Null device

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

10S=47 108



10S_$INQ_TYPE_UID

USAGE

)

Use this call to determine the object’s current type UID given its stream ID. You can use

the type UID returned by this call as a parameter in the I0S _$CREATE call to create
another object of the same type.

108 105-48




e

/

O

O

I0S_$LOCATE

10S_$LOCATE

Reads data from a stream, and returns a pointer to the data.

FORMAT

ret-length = I0OS_$LOCATE (stream-id, get-options, data-ptr, data-size,
status)

RETURN VALUE

ret-length
Amount of data read, in bytes. This is a 4-byte integer.

"Ret-length" equals the amount of data read; "ret-length" equals 0 if IOS__ $LOCATE does
not return any data.

If the length of the data read exceeds the amount specified in "data-size," I0S__ $LOCATE
performs the following:

o Reads enough data to fill the requested size
e Sets "ret-length" equal to "data-size"
o Positions the stream marker to the first unread byte

e Returns the IOS_$BUFFER_ TOO _ SMALL status code to indicate that this
condition has occurred

You can inquire about how many bytes remain to be read in the current record by calling

I0S_$INQ REC_ REMAINDER.

INPUT PARAMETERS

stream-~-id
Number of the stream on which the object is open, in IOS _ $ID _ T format. This is a
2-byte integer.

get-options
Options that control how IOS_$LOCATE performs the get operation, in
I0S_$PUT_GET_ OPTS__ T format. This is a 2-byte integer. Specify a combination of
the following set of predefined values:

IOS _$COND _ OPT Reads data, if available. (For example, data
’ on an SIO line is not always available
immediately.) If the data is not available,
IOS_$GET returns the
I0S_$GET _ CONDITIONAL _ FAILED
status code and sets the return value of
"ret-length" to 0.

I0S _$PREVIEW _ OPT Reads data but does not update the stream

marker.

105-49 I0S



I0S__$LOCATE

IOS__$NO_REC_BNDRY_ OPT Ignores record boundaries while reading data.
For example, it ignores NEWLINE characters
in a UASC object, which guarantees that the
call fills the specified buffer. Some type
managers might not support this call.

IOS_$PARTIAL _RECORD _OPT Not meaningful for this call.

data-size

Maximum amount of data to be read, in bytes. This is a 4-byte integer.

OUTPUT PARAMETERS

data-ptr

A pointer to the located data, in UNIV_PTR format. This is a 4-byte integer. Note that
this pointer remains valid only until the program invokes the next IOS call.

If IOS_$LOCATE is unable to return a pointer to the location of the data, it copies the
data into a system buffer and then returns the address of the buffer in "data-ptr." (See the
USAGE Section below for more details.)

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the I0S

Data Types section for more information.
4

USAGE

108

You can use either IOS__$LOCATE or IOS_$GET to read data from system objects.
JOS _$LOCATE returns a pointer to the data, while IOS__$GET copies the data into a
buffer.

In most cases, use the IOS__$LOCATE call to read data because it is faster
(IOS _$LOCATE does not perform a copy).

You will want to use IOS__$GET when you need to read more data than can be obtained in
one call, because the pointer remains valid for only one call. For example, when you need
to read and rearrange a number of lines from an object.

Normally, IOS_$LOCATE locates data and returns a pointer to the data. However, not
all managers support the internal buffering necessary for IOS__$LOCATE to work this
way. In these cases, IOS_ $LOCATE will not be able to return a pointer to the data.

Instead, IOS_ $LOCATE actually creates a buffer and then calls IOS__$GET to perform
the get call. In this case, IOS__$LOCATE is no more efficient than IOS_ $GET. The size
of the buffer that IOS__ $LOCATE creates is either the length you specify in "data-size," or
1024 bytes, whichever is the smaller.

Use IOS _$SET_LOCATE_BUFFER _SIZE to specify a buffer larger than 1024 bytes, if
necessary. In this case, IOS__$LOCATE is no more efficient than IOS__$GET.

See the IOS__$SET_LOCATE _BUFFER _ SIZE call description for more information.

10S=50

\.
()
N/

2




10S_$OPEN

10S_$OPEN

Opens a stream to an existing object.

FORMAT

stream-id = IOS_$0PEN (pathname, namelength, open-options, status)

RETURN VALUE

stream~-id
Number of the stream on which the object is open, in IOS_$ID __T format. Thisis a
2-byte integer.

INPUT PARAMETERS

pathname

Name of the object to be opened, in NAME _$PNAME _ T format. This is an array of up
to 256 characters.

namelength
Length of the pathname. This is a 2-byte integer.

open-options
Options available at open time, in IOS__$OPEN_ OPTIONS _ T format. This is a 2-byte
integer. Specify a combination of the following set of predefined values:

IOS_$NO _OPEN_DELAY__OPT Return immediately, instead of waiting for the
open call to complete.

I0S_$WRITE _OPT Permit writing data to a new object. If a
program tries to write on a stream for which
you have not specified this option, it returns
an error status.

I0S_$UNREGULATED _ OPT Permit shared (unregulated) concurrency
mode.
IOS_s$POSITION__TO__EOF _OPT Position the stream marker at the end of the

object (EOF). Use this to append data to an
existing object.

IOS _$INQUIRE _ONLY_OPT Open the object for attribute inquiries only;
do not permit reading or writing of data.

IOS_$READ _INTEND_WRITE__OPT  Open the object for read access with the
intent to eventually change the object’s access
to write access. This allows other processes to
read the object; but they cannot have write or
read-intend-write access.

10s-51 108



I0S_ $OPEN

OUTPUT PARAMETERS et

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

USAGE

This routine opens a stream to the named object. It returns the stream ID to be used in
subsequent stream activity with the object. An error occurs if the object does not exist. If
the object already exists, IOS_$OPEN does not change its attributes.

IOS_$OPEN does not return information about the object’s attributes. To get information
about an object, use the calls with the prefix IOS_ $INQ. To change an object’s attributes,
use the calls with the prefix IOS__$SET.

®

108 105=-52




I0S_$PUT

- IOS__$PUT

/

\) Writes data into an object.
FORMAT

I0S_$PUT (stream-id, put-options, buffer, buffer-size, status)

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in IOS_$ID _ T format. Thisis a
2-byte integer.

put-options
Options that control how IOS__$PUT performs the put operation, in
IOS _$PUT_GET _OPTS_T format. This is a 2-byte integer. Specify any combination

Q of the following set of predefined values:

IOS_$COND_ OPT Write a record only if it can be done without
blocking. If the call would block, it returns
the IOS__$PUT_ CONDITIONAL _ FAILED
error status.

IOS_$PREVIEW _OPT Write data but do not update the stream
marker.

O I0S_$PARTIAL _RECORD _OPT Write a portion of a record but do not

terminate it. I0S_$PUT terminates the
record when you call IOS__ $PUT without
specifying this option. If you do not specify
this option, IOS_ $PUT writes a full record.
You can use this option with record-oriented
objects only. IOS__$PUT ignores this option
if you specify it with any other type of

Q objects.

I0S_$NO_REC_BNDRY__OPT Not meaningful for this call.

buffer
Buffer to contain the data. This is a character array.

buffer-size
Size of the buffer containing the data, in bytes. This is a 4-byte integer.

OUTPUT PARAMETERS
status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

O

108-53 108



10S_$PUT

USAGE

108

I0S _$PUT writes data into an object. Use "put-options," which is in the
I0S _$PUT_ GET_OPTS_ T format, to write the data to the object in different ways.

If the object is record-oriented, you can write data to it record by record. This is the
default action (for record-oriented objects) when you specify the default ([]) value in
"put-option.®

To write a single record with more than one put operation (for example, to write one field
at a time), use the IOS__$PARTIAL _RECORD _ OPT option. If you specify this option,
IOS _ $PUT writes the data, but does not terminate the record. I0S__$PUT terminates the
record when you call it without specifying this option.

To write to objects which might not always be immediately available (for example, an MBX
channel), you perform conditional put operations with the IOS__ $COND __ OPT option.

I0S=54

C

4




1I0S_$REPLICATE

I0S__$REPLICATE

Creates a copy of a specified stream ID.

FORMAT

return_stream id = IOS_$REPLICATE (stream_id_to_replicate, copy stream id,
status)

RETURN VALUE

return__stream _id
Number of the new stream created, in IOS_$ID _ T format. This is a 2-byte integer.

INPUT PARAMETERS

stream __id_ to_ replicate
Number of the stream to replicate, in IOS__$ID _ T format. This is a 2-byte integer. This
stream number remains a valid connection to the object after IOS__$REPLICATE
completes successfully.

copy _stream _id
Number of the stream to use as the copy for "stream _id__to__replicate," in IOS_$ID T
format. This is a 2-byte integer.

If "copy _stream __id" is free, IOS__ $REPLICATE returns that number in

"return_ stream _id." If "copy-stream-id" is in use, IOS_ $REPLICATE begins searching
from that number downward (lower numbers) until it finds a free stream number, and
returns that number in "return__stream _id."

If the actual number of the copy stream is insignificant, specify the predefined constant
IOS_$MAX. This value causes IOS__ $REPLICATE to begin searching at the highest
possible stream number and return the first free stream number it finds.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

USAGE

Use IOS__ $REPLICATE to create a copy of an existing stream ID. The new stream ID
refers to the same connection as the existing stream ID. Note that you must close both
streams with IOS_ $CLOSE before the stream connection actually closes.

10S_$REPLICATE is identical to JOS_$DUP except that IOS__$REPICATE looks for a
free stream in descending order from the specified stream ID, while IOS _$DUP looks in
ascending order. Note that you use IOS__$DUP or IOS_$REPLICATE to copy existing
stream ID’s, both the existing and new stream ID’s remain valid connections. However, you
use IOS__$SWITCH to replace stream IDs; you "switch" the connection from the existing
stream ID to the new stream ID.

105=55 108



I0S_$REPLICATE

You can use IOS__$REPLICATE to keep a stream connection open when passing it to a
subroutine. Use [OS__ $REPLICATE to create a copy of the stream ID before passing it.
This way, the subroutine cannot close the connection to the object because all copies of the
stream connection must be closed before the connection itself gets closed.

10S _$RELPLICATE is analagous to UNIX DUP.

108 105=56




O

I10S_ $SEEK

10S_ $SEEK

Performs an absolute or relative seek using byte or record positioning.

FORMAT

I0S_$SEEK (stream-id, abs-rel, seek-type, offset, status)

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in IOS__$ID _ T format. This is a
2-byte integer.

abs-rel
Value specifying the base for the seek operation, in IOS_$ABS_REL _ T format. This is
a 2-byte integer. Specify one of the following predefined values:

10S_ $RELATIVE The seek is relative to the current position.
I0S_$ABSOLUTE The seek is relative to the beginning of the object (BOF).
seek-type

The type of seek to be performed, in IOS__$SEEK _ TYPE _ T format. This is a 2-byte
integer. Specify one of the following predefined values:

I0S _$REC _SEEK Record-oriented seek.

I0S_$BYTE _SEEK Byte-oriented seek.

offset
A signed integer offset value indicating the number of records or bytes from the seek base
to position the stream marker. This is a 4-byte integer.

If the integer is a positive number, IOS_$SEEK uses BOF as the seek base and searches
forward. If the integer is a negative number, IOS_ $SEEK uses EOF as the seek base and
searches backward. Whether the offset indicates bytes or records depends on the type of
seek you specified in "seek-type."

You can get an offset number to use in an absolute seek with the calls

10S_$INQ_BYTE_POS and I0S_$INQ_REC_POS.

Note that both byte and record positions are zero-based; consequently, the first byte or
record number is 0.

OUTPUT PARAMETERS
status

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

108=57 108



10S_ $SEEK

USAGE

Use IOS _$SEEK to seek to an absolute or relative byte or record position within an object.

You can use this call with the JOS_$INQ _BYTE_ POS and I0OS_$INQ__REC_ POS
calls to perform absolute position seeks.

108 10S-58

)




O

10S_$SEEK_FULL_KEY

I0S_$SEEK FULL _KEY

Performs a seek using a full (8-byte) seek key.

FORMAT
I10S_$SEEK FULL_KEY (stream-id, full-key, status)

INPUT PARAMETERS

stream-id

Number of the stream on which the object is open, in IOS_$ID _ T format. This is a
2-byte integer.

full-key
A full seek key, in IOS__ $SEEK_KEY _ T format. This data type is 8 bytes long. See the
IOS Data Types section for more information.

OUTPUT PARAMETERS

status

Completion status, in STATUS__$T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

USAGE

Before performing a full key seek, you must first obtain a full seek key by using the
IOS_$INQ_FULL_KEY call. This call allows you to inquire about a seek key before
writing some data, and then store the seek key. To access the data at a later time, position
the stream marker by calling the IOS _ $SEEK _ FULL _ KEY call with the stored seek key,
and then get the data with an IOS get call (IOS__$GET or IOS_ $LOCATE).

108=~59 108




10S_ $SEEK_ SHORT _KEY

I0S_$SEEK_SHORT _KEY

Performs a seek using a short (4-byte) seek key.

FORMAT
I0S_$SEEK_SHORT KEY (stream-id, short-key, status)

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in IOS_$ID _ T format. Thisis a
2-byte integer.

short-key :
A short seek key. This is a 4-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

USAGE

Before performing a short key seek, you must first obtain a short seek key by using the
IOS _$INQ__SHORT _KEY call. This call allows you to inquire about a seek key before
writing some data, and then store the seek key. To access the data at a later time, position
the stream marker by calling IOS_ $SEEK _ SHORT _ KEY with the stored seek key, and
then get the data with an IOS get call (I0OS__$GET or I0S_$LOCATE).

108 105-60

)

/,_.



O

10S_$SEEK_TO_BOF

I0S__$SEEK_TO _BOF

Positions the stream marker to the beginning of an object.

FORMAT
I0S_$SEEK_TO BOF (stream~id, status)

INPUT PARAMETERS

stream=-id
Number of the stream on which the object is open, in IOS_ $ID T format. This is a

2-byte integer.
OUTPUT PARAMETERS

status

Completion status, in STATUS__$T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

USAGE

Use IOS__$SEEK _TO_ BOF to position the stream marker to the beginning of an object
(BOF). Use this call when performing a nonkeyed seek on an object.

I10S=-61 I0S



10S_$SEEK_TO_EOF

10S__$SEEK_TO_EOF

Positions the stream marker to the end of an object.

FORMAT
I0S_$SEEK TO_EOF (stream-id, status)

INPUT PARAMETERS

stream=-id
Number of the stream on which the object is open, in IOS_$ID _ T format. Thisis a
2-byte integer.

OUTPUT PARAMETERS

status

Completion status, in STATUS _$T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

USAGE

Use IOS_ $SEEK _ TO _ EOF to position the stream marker to the end of an object (EOF).
Use this call when performing a nonkeyed seek on an object.

10§ 1058=62

)

®

)




I0S_$SET__ CONN_ FLAG

I0S_$SET_ CONN_ FLAGS

Changes the set of connection attributes associated with a stream connection.

FORMAT

I0S_$SET_CONN_FLAG (stream-id, conn-flag, on-off, status)

INPUT PARAMETERS

stream-id

Number of the stream on which the object is open, in IOS__$ID _ T format. This is a

2-byte integer.

conn-flag

Flag indicating which attribute of the specified connection you want to change, in
IOS_$CONN_FLAG__ T format. This is a 2-byte integer. Specify one of the following

predefined values:

10S_$CF_TTY

I0S__$CF _IPC

I0S_$CF_VT

I0S_$CF_ WRITE

I0S_ $CF_ APPEND

I0S_$CF_ UNREGULATED

IOS_$CF_READ _INTEND _ WRITE

on-off

Connection behaves like a terminal.

Connection behaves like an interprocess
communication (IPC) channel.

Connection behaves like a DOMAIN Display
Manager pad.

Connection can be written to.

Connection’s stream marker will be positioned
at the end of the object (EOF) before each put
call.

Connection is open for unregulated (shared)
concurrency mode.

Connection is open for read access, and can be
changed to write access. Other connections
can have read access, but not write or
read-intend-write access.

Boolean value indicating whether the specified attribute should be included in the set (on),

or removed from the set (off).

OUTPUT PARAMETERS

status

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IOS

Data Types section for more information.

105-63 (]



10S_$SET_ CONN_ FLAGS

USAGE

108

Use IOS_$SET _CONN _ FLAG to change the attributes of a connection. Note that
objects do not support all connection attributes. To determine the connection’s current set
of attributes, use IOS_$INQ__CONN _ FLAGS before using this call.

To change the set of attributes, you must call IOS__$SET_ CONN_ FLAG for each
connection attribute you want to change. To add an attribute to the set, call

I0S _$SET _ CONN_ FLAG, specifying the desired attribute, and set the "on-off"
parameter to TRUE. To remove an attribute from the set, use this call, specifying the
attribute to remove, and set the "on-off" parameter to FALSE.

Before an object can permit the operation indicated by an attribute, the object’s manager
and connection attributes must permit the operation as well. For example, a manager’s
attribute set might contain the attribute that permits writing to an object
(IOS_$MF _ WRITE), but a specific object’s connection attribute set might not include the
I0S_$CF _ WRITE attribute, which permits writing to the object. In this case, you
cannot write to that particular object.

105~64

O

)

@




I0S_$SET_DIR

I0S_$SET_DIR

Changes the current working or naming directory.

FORMAT

I0S_$SET_DIR (pathname, namelength, dir_type, status)

INPUT PARAMETERS

pathname ‘
Name of the directory to set, in NAME_ $PNAME __ T format. This is an array of up to
256 characters.

namelength
Length of "pathname." This is a 2-byte integer.

dir _type

Option specifying which type of directory to set, in IOS _$DIR_TYPE__ T format.
Specify one of the predefined values:

IOS_$WDIR Name of the current working directory.

I0S _$NDIR Name of the current naming directory.

OUTPUT PARAMETERS
status

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the I0S
Data Types section for more information.

USAGE

Use this call to change the current working or naming directory. You can use
I0S_$GET __DIR to get the name of the current working or naming directory.

105-65 108



I0S_$SET_LOCATE_ BUFFER_ SIZE

I0S_$SET_LOCATE _ BUFFER _ SIZE
Sets the size of the buffer that IOS__ $LOCATE allocates.

FORMAT
I0S_$SET_LOCATE BUFFER_SIZE (stream-id, buffer-size, status)

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in IOS_$ID __ T format. This is a
2-byte integer.

buffer-size
Size of the buffer you want to allocate. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

USAGE

Normally, IOS_$LOCATE locates data and returns a pointer to the data. However, not
all managers support the internal buffering necessary for I0S_ $LOCATE to work this
way. In these cases, IOS__$LOCATE will not be able to return a pointer to the data.

Instead, JIOS_$LOCATE actually creates a buffer and then calls IOS__$GET to perform
the get call. In this case, IOS__ $LOCATE is no more efficient than I0S_$GET. The size

of the buffer that IOS_$LOCATE creates is either the length you specify in "data-size," or

1024 bytes, whichever is the smaller.

Use IOS_$SET_LOCATE _BUFFER _SIZE to specify a buffer larger than 1024 bytes, if

necessary.

For example, if you are using IOS__$LOCATE with a data-size parameter of 2000 bytes,
and the manager of the object from which you are reading does not support internal
buffering, the IOS_ $LOCATE call, by default, will copy as much of the requested data as
it can into a 1024-byte-long buffer and return a pointer to that buffer.

However, if you precede the IOS__$LOCATE call with a call to

IOS _$SET _LOCATE_BUFFER _SIZE, specifying a buffer-size of 2000, the
I0S_$LOCATE call will use a 2000-byte-long buffer and will be able to copy all the
requested data into the buffer. This new buffer size will be valid as long as the stream
exists.

108 108-66

N

/'w
{




10S_$SET_OBJ_FLAG

I0S_$SET_OBJ_FLAG

Changes the set of object attributes associated with an object.

FORMAT

I0S_$SET_OBJ_FLAG (stream-id, obj-flag, on-off, status)

INPUT PARAMETERS

stream-id

Number of the stream on which the object is open, in IOS_$ID _ T format. This is a

2-byte integer.

obj-flag

Flag indicating which attribute of the specified object you want to change, in
IOS _$OBJ_FLAG _ T format. This is a 2-byte integer. Specify one of the following

predefined values:

I0S_$OF _DELETE _ON_ CLOSE

I0S_$OF _SPARSE _OK
10S_$OF _ASCII

I0S_$OF_FTNCC

I0S_$OF _ COND

on-off

Object will be deleted when all its associated
streams close.

Object can be written as a sparse object.
Object contains ASCII data.

Object uses FORTRAN carriage control
characters.

Get or put calls to the object will be
performed conditionally, as if the
IOS_$COND _ OPT was specified on a get or
put call.

Boolean value indicating whether the specified attribute should be included in the set (on),

or removed from the set (off).

OUTPUT PARAMETERS

status

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

105-67 108



10S_$SET_OBJ_FLAG

USAGE

I0S

Use IOS_$SET _ OBJ_FLAGS to change the attributes of an object. Note that objects do
not support all object attributes. To determine the object’s current attribute set, use the

I0S_$INQ_ OBJ_FLAGS call.

To change an object’s attribute set, you must call IOS_$SET _OBJ_FLAG once for each
object attribute you want to change. To add an attribute to the set, call
I0OS_$SET__OBJ__FLAG, specifying the desired attribute, and set the "on-off* parameter
to TRUE. To remove an attribute from the set, use this call, specifying the attribute to
remove, and set the "on-off" parameter to FALSE.

Before an object can permit the operation indicated by an attribute, the object’s manager
and object attributes must permit the operation as well. For example, a manager’s
attribute set might contain the attribute that allows the object to perform put and get calls
conditionally (IOS__$MF _ COND), but a specific object’s object attribute set might not
include the IOS__$OF _ COND attribute. In this case, you cannot make conditional put or
get calls to that particular object.

105-68




O

O

10S_$SET_REC_ TYPE

10S_$SET_REC_TYPE

Sets the record type format and (optionally) record length of a file.

FORMAT
I0S_$SET _REC_TYPE (stream-id., record-type, record-length, status)

INPUT PARAMETERS

stream-id
Number of the stream on which the object is open, in IOS_$ID _ T format. This is a
2-byte integer.

record-type
Type of record format to change for the specified object, in IOS_$RTYPE T format.
This is a 2-byte integer. Specify one of the following predefined values:

I0S_$V1 Variable-length records with count fields.
IOS__$F1 Fixed-length records without count fields.
I0S _gF2 Fixed-length records with count fields. However, IOS__$PUT

can change the IOS__ $F2 type to IOS__$V1 implicitly. (See
Usage section below.)

I0S _ $EXPLICIT _F2 Fixed-length records that IOS_$PUT cannot implicitly change
to variable-length records. (IOS__$PUT can change the
I0OS _3$F2 to IOS_$V1 implicitly. See Usage section below.)

I0S_$UNDEF No record structure.

record-length
Length to set for the fixed-length records of the object. This is a 4-byte integer. Specify
this value only if the object is empty.

OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the 10S
Data Types section for more information.

USAGE

By default, a record-oriented object has fixed-length records (IOS_ $F2). They remain
fixed-length records until IOS__ $PUT writes records of different lengths. At this point,
I0S_$PUT implicitly changes the objects to variable-length type (IOS__$V1). In some
cases, you might want to explicitly set the record type to IOS__$EXPLICIT _F2 so that an
attempt to write a variable-length record results in an error. To do so, use this call.

10S-69 108



10S_ $SWITCH

I0S _$SWITCH

Switches a stream from one stream ID to another stream ID.

FORMAT

ret-stream-id = IOS_$SWITCH (stream-id-to-switch, new-stream-id, status)

RETURN VALUE

ret-stream=-id

Number of the new stream ID that replaces the existing stream ID, in IOS _$ID __ T format.

This is a 2-byte integer.

INPUT PARAMETERS

stream~id-to-switch
Number of the stream to switch, in IOS_$ID __ T format. This is a 2-byte integer.

This stream number becomes tnvalid after the IOS_ $SWITCH call completes sucessfully.

new=-stream=-id

Number of the stream to use as the new stream ID, in IOS_$ID__ T format. This is a
2-byte integer.

If "new-stream-id" is free, IOS_ $SWITCH returns this value in “"ret-stream-id." If
*new-stream-id" is in use, IOS_ $SWITCH begins searching from that value downward
(lower numbers) until it finds a free stream number and returns that number in
“ret-stream-id."

If the actual number of the replacement stream is insignificant, specify the predefined
constant IOS _ $MAX. This value causes IOS_$SWITCH to begins searching at highest
possible stream number and return the first free number it finds.

OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

USAGE

Use IOS _ $SWITCH to switch one stream ID for another. The new stream ID refers to the
same connection as the old stream ID, making the old stream ID invalid.

Note that you use IOS__$SWTICH to replace stream IDs; you "switch" the connection
from the existing stream ID to the new stream ID. However, you use IOS_$DUP or
I0S_$REPLICATE to copy existing stream IDs, both the existing and new stream IDs
remain valid connections.

108 ' 10S-70

~
N




O

10S_$TRUNCATE

IOS _$TRUNCATE

Deletes the contents of an object following the current stream marker.

FORMAT
I0S_$TRUNCATE (stream-id, status)

INPUT PARAMETERS

stream-~-id
Number of a stream on which the object is open, in IOS__$ID _ T format. This is a 2-byte
integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the IOS
Data Types section for more information.

USAGE

I0S_$TRUNCATE decreases the value of the object’s length attribute to match the
stream marker. (Writing data to a stream that lengthens the object implicitly increases this
attribute’s value.) This call sets the stream marker to the end of the object (EOF),
effectively deleting any data in the object past the stream marker. If the stream position is

already at EOF, IOS_ $TRUNCATE has no effect.

Truncating an object does not close the stream.

105-71 108



10S ERRORS

ERRORS

IOS__$ALREADY _EXISTS

Object already exists; detected by IOS__$CREATE with I0S__ $NO_ PREXIST

option.

JOS_$BAD _CHAR_SEEK

Attempted character seek before start of current (variable-length) record.

IOS _$BAD _COUNT _FIELD _IN_FILE
Count field for current record is wrong.

I0S_$BAD_FILE__HDR
Wrong stream file header.

I0S_$BAD_LOCATION
Bad location parameter on I0S__ $CREATE call..

I0S_$BAD _OPEN_XP

OPEN _ XP must reference a stream that is already open in this process.

I0S_$BAD _SHARED CURSOR_REFCNT

Reference count on a shared object cursor went below zero.

I0S__$BOF _ERR
Attempted seek beyond beginning of object (BOF).

IOS_$BUFFER _TOO_ BIG
Buffer size too large on IOS_$GET or I0S_$LOCATE call.

I0S _$BUFFER _TOO__SMALL
Buffer too small on I0OS__$GET or IOS_$LOCATE call, warning.

I0S_$CANT_CHANGE _TYPE
Cannot change the type as requested, detected by IOS_ $¢CREATE.

I0S_$CANT_DELETE _OLD_NAME
Added new name, but cannot delete old name.

I0S _$CANT _ INITIALIZE
Cannot initialize an object of this type.

I0S_$CANT _SET__ADVISORY _LOCK
Advisory lock already set on this object.

IOS_$CONCURRENCY _ VIOLATION

Requested access violates concurrency constraints, object is in use.

I0OS_$DEVICE_MUST_BE__LOCAL
Cannot open stream to remote device.

IOS_$DIR_NOT_FOUND
Couldn’t find directory in pathname on IOS_ $CREATE.

I0S_$END__OF _FILE
End of file.

I0S_$FILE _NOT_EMPTY
Object not empty.

108 108=72

~




Ve '—\,
N\

I0S ERRORS

I0S _$FLAG_NOT._SUPPORTED
Flag not supported for this object type.

I0S_$FROM_ ID__NOT_ OPEN
Stream ID to switch not open on I0S_ $SWITCH.

I0S_$FULL_REC_ UNAVAIL
I0S_$GET or I0S__$LOCATE requested a full record, but only part of the record
was available. The call returns the part that is available along with this warning that
there is still more room in the buffer.

I0S _$GET_ CONDITIONAL _ FAILED
Cannot read any data because the stream is empty; detected by IOS__ $COND __ OPT
option. :

I0S_$ID_ OOR
Stream ID is out-of-range or invalid.

I0S_$ILLEGAL _NAME__REDEFINE
Attempted name change would require object to be moved, detected by
I0S_$CHANGE _PATH__NAME.

I0S _$ILLEGAL _OBJ__TYPE
Cannot open a stream for this type of object.

I0S_$ILLEGAL _ OPERATION

Operation illegal on named stream.

I0S_$ILLEGAL_PAD__CREATE__TYPE
Cannot perform this operation on a pad type.

10S_$ILLEGAL PARAM_COMB

Illegal parameter combination for this operati